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The various tasks described in this report dealt with numerical and
experimental analysis of a thin liquid film on a rotating and stationary
disk related to the development of an absorber unit for a high capacity
spacecraft absorption cooling system. The idea that was focused upon in
this report was the creation of an artificial gravity by the use of a
centrifugal field. The basic phenomena related to the fluid flow and
heat transfer on rotating systems that have been reported during this

effort can be applied to other areas of space systems as wvell.
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Section I

4

ONE- DIMENSIONAL COMPUTATION OF THIN LIQUID FILN FLOVS

1.1 SUNNARY

The flow of a thin liquid film with a free surface along a horizontal
plate which emanates from a pressurized vessel is examined numerically. In
one g, a hydraulic jump was predicted in both plane and radial flow, which
could be forced away from the inlet by increasing the inlet Froude number
or Reynolds number. In zero g, the hydraulic jump was not predicted. The
effect of solid-body rotation for radial flow in one g was to "wash out"
the hydraulic jump and to decrease the film height on the disk. The liquid
film height under one g and zero g wvas equal under solid-body rotation
because the effect of centrifugal force was much greater than that of the
gravitational force. The heat transfer to a film on a rotating disk was
predicted to be greater than that of a stationary disk because the liquid

film is extremely thin and is moving with a very high velocity.



1.2 INTRODUCTION .

The study of thin liquid films has been performed by many researchers
in the past due to the high heat transfer rates that can be achieved. Even
though the heat transfer to thin films falling down a vertical plate is
quite high, much better heat transfer rates can be realized when the film
is generated by the impingement of a liquid jet onto a surface that is
perpendicular to the jet. This is due to the fact that in most cases the
film velocities are greater than those of a falling film. Since it 1is
difficult to examine the entire flow field from the impinging jet to the
perpendicular thin film, it is proposed to study only the thin film.  This
is accomplished by the following mechanism: the liquid is pressurized in a
container and emanates from a slot which generates the thin film on a
horizontal plate. Vith this situation, the height and mean velocity of the
film will be known boundary conditions, which will aid in determining the
characteristics of the film downstream. After the structure of the liquid
film has been examined, the amount of heat that can be transferred to it
can be found. Furthermore, in this study it is also desired to understand
the effects of centrifugal force and zero gravity on the flow field. If
the film is generated on a spinning disk, it is expected that the film will
accelerate and become thinner, since the centrifugal force acts in the main
direction of the flow. This acceleration of the liquid film will increase
the amount of heat that can be transferred from the spinning disk to the
film. The effect of zero g on the flow is also examined to determine the
nature of the liquid film height when the gravitational field across the
film is not present. The combined effects of centrifugal acceleration and

a zero g environment on the fluid characteristics and heat transfer to a



thin film are not known at present. It is felt, however, that this
fundamental reséarch will become important in the future because of
programs like the Space Station where improved heat exchangers will be
needed. This research will also be instrumental in the development of an
absorber unit for a spacecraft vapor-absorption heat pump system, which was

the motivation for the present work.

Many investigations have been carried out concerning thin liquid films
created by impinging jets and/or spinning disks because of the numerous
applications where the improved  heat or mass transfer is desirable.
Sparrov and Gregg (1959) analytically determined the condensate thickness
on a rotating disk in a large vessel of quiescent saturated vapor. Vatson
(1964) analysed a free-falling jet which impinges on a horizontal plane
using a similarity solution. Chaudhury (1964) used a similarity solution
to analyse the heat transfer in the thin liquid layer on a horizontal plate
on which a liquid jet impinges. Aroesty et al. (1967) studied the use of
thin films under centrifugal force as an aid to blood oxygenation. The
flow of a liquid film on a rotating disk was examined by Matsumoto et al.
(1973) in connection with the atomization of a liquid for spray drying and
. the promotion  of ‘chemical reactions or absorption between gases and
liquids. Rauscher et al. (1973) analysed the laminar flow of a thin film
on a rotating disk by employing the asymptotic expansion technique.
Eliseev (1983) examined the spatial stability of liquid films on a rotating
disk by the asymptotic expansion technique. The study of thin films in
regard to spin coating deposition of thin solid films was carried out by
Jenekhe (1984). Needham and Merkin (1987) theoretically studied thin

axisymmetric liquid films on a horizontally rotating disk to determine the



criteria for stability of the film. FKatto and Yokaya (1988) analyzed the
existing experimental data for the critical heat flux of a disk heater

cooled by an impinging liquid jet and gave an equation correlating the

data.

The motivation of the present work is the study of thin 1liquid films
which will be wused in space-based centrifugal heat exchangers and vapor
absorption heat pumps. Since a falling film cannot be achieved in a zero g
environment, it is natural to consider the possibility of using the
artificial gravity created by the centrifugal force on a rotating disk to

generate a thin film.

In the present study, the governing equations and boundary conditions
are presented for two situations of a thin liquid layer emanating from a
pressurized vessel and traveling along a horizontal plate with a constant
initial height and uniform initial velocity as shown in Fig. 1.1. The
first case is when the liquid flows along a channel with a constant width,
which is shown in Fig. 1.2a. This situation is the same as open channel
flow, but since the liquid height is very thin the effect of viscosity must
be accounted for. The second case, which is shown in Fig. 1.2b, 1is when
the liquid originates between two parallel disks, and then spreads out
radially over the bottom disk in a free surface thin film because the
diameter of the upper disk is much smaller than that of the lower disk.
This situation is similar to a jet of liquid impinging onto the center of a
horizontal disk, except that the height and the mean velocity of the liquid
film are known at a specific radial location. In the case of radial f£flow,

the rotational acceleration will be modeled as solid-body rotation, where
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the centrifugal forces act only in the radial direction.

It is desired to numerically solve for the liquid height at any
distance down the length of the plate for different Froude numbers and
Reynolds numbers specified at the inlet. The heat transfer from the plate
Jill also be studied for the case of simple heating with no evaporation at
the free surface. Since the inlet Froude number may be greater than unity,
it is possible that a hydraulic jump will occur at some point in the
computational domain. A hydraulic jump is when the flow suddenly changes
from supercritical (Fr > 1) to, subcritical (Fr < 1) flow, which is
accompanied by a sudden increase in the liquid height. This is analogous
to the shock wave in gas dynamics when the flow changes from supersonic
(4 > 1) to subsonic (¥ < 1) flow in a very short distance. The similarity
between the hydraulic jump and the shock wave in gas dynamics suggests
using the familiar approach of modeling the flow as a transient phenomenon
and allowing the solution to march in time to achieve the desired
steady- state results. To the authors’ knowledge, this approach has not
been applied to this type of problem before. It should be emphasized that
conventional numerical techniques that are applied to 2- or 3-dimensional
problems cannot be used directly to solve this particular problem because
the location of the free surface is unknown prior to the start of the

calculations.

1.3 FLUID FLOV ANALYSIS

The conservation of mass, momentum, and energy in the general
coordinate system can be expressed in the following compact form for a thin

incompressible liquid film with constant properties.



v-V=0 . » (1.3.1)

D 2y -
pD% = - Vp + p¥°V + pg (1.3.2)
M- avir (1.3.3)

In the general coordinate system given in Fig. 1.1, the direction that
is parallel to the plate in the main direction of the flow will be denoted

by r and the direction that is normal to the plate will be denoted by =z.

—
The velocity vector V has three components; w, v, and u, where w is in the

r-direction and v is in the y-direction. The component of velocity in the
x-direction, as shown in Fig. 1.2a, is set equal to zero for plane flow.
The component of velocity in the f-direction, as shown in Fig. 1.2b, is

equal to u for radial flow.

Several assumptions are made in order to reduce the complexity of the
governing equations. Any changes in the variables with respect to the #-
or x-directions are set to zero. In the gravitational field, g, only the
component across the film thickness, 8y is considered. The boundary layer
assumptions are imposed on the governing equations, which neglect the
diffusion terms in the main direction of the flow based on an
order- of-magnitude analysis. At the free surface, the effects of
interfacial shear stress and the surface tension are assumed to be zero.
It should be noted that the effect of surface tension may be significant
near the inlet and outlet of the domain and in the hydraulic jump region.

The pressure in the liquid film is defined as the difference between the



actual pressure and the atmospheric pressure, so at the free surface the
pressure is equal to zero. For the case of radial flow, it is assumed that
the velocity component in the §-direction is u = wr, i.e., solid-body
rdtation. By an order-of-magnitude analysis, this assumption is valid for

small values of the Rossby number (Ro < 1).

The boundary and initial conditions for the governing equations in

fixed coordinates are those on the flat plate and on the free surface of

the liquid.

y:O: w:O, u = wr, v=2~0

y = §: v=§%+w§-§,p=0, -g%=0
I =Ty: W =Wy VE 0, §&=246,,

t=0: wW=wy, V= 0

The boundary condition involving v at the free surface is the
kinematic condition for time-dependent problems.  The boundary condition
involving dw/dy at y = § corresponds to neglecting the interfacial shear

stress at the free surface.

The continuity equation and the conservation of momentum equations in
the r- and y-directions can be integrated with respect to the y-direction
across the thin liquid layer by using Leibniz’s rule and the kinematic
condition at the free surface. Due to the boundary-layer assumptions, the
conservation of momentum equation in the y-direction results in a balance
between the pressure gradient and the gravitational force. This equation

is then substituted into the r-direction momentum equation. It is assumed



that the velocity in the main direction of the flow-is constant across the

thin film, so that

)
J w2 dy = V26
0

It should be noted that this is not a major assumption. For example,

for a parabolic velocity profile, the left-hand side is equal to 6V26/5.

The resulting one-dimensional time-dependent equations in the general

coordinate system are given in the following form:

L& ey« %= (1.3.4)
T

2
9 9 [.2. 1..2] 2 W 1 v

To properly assign the boundary conditions of the flow, the

characteristic behavior of the flow will be examined. The governing

equations can be cast in the characteristic form by the following analysis.

The governing equations (1.3.4 and 1.3.5) can be rearranged by

subtracting W continuity equation from the momentum equation.

195, Va6, N _ W
TR FT I T

8V+V0V+(6)166_(21_TW
Jt ~ or 80) 59 7 1Y 6prué

10



The characteristic form of the equations are obtained by linearizing

the continuity and momentum equations:

where
2 _
2in géin
Y
Si=- T
T
52 = ru2 [1 - ——E—g]

dpruw

These two equations can be represented by the following characteristic

equation.

aR. dR.
1 + C. 1 = S
at i dr 1

. The Reimann invariants and the physical wave speeds are given in the

following table.

Vo ain(6/61n) Yin * %in a'inSl * S2
V- a‘in(ﬁ/éin) vin T 24n 'ainsl * S2

11



An examination of the characteristics reveals that the first invariant
will always propagate downstream. The direction of propagation for the
second invariant depends upon whether the flow is supercritical or
subcritical. For supercritical flow (i.e., Fr > 1), the second invariant
propagates downstream, so the boundary conditions on ¥ and § will both be
assigned at the inlet of the flow field. Por subcritical flow (i.e.,
Fr < 1), the second invariant propagates upstream, so the boundary

conditions must be assigned at the inlet and the outlet of the flow field.

The following assumption is made to simplify the governing equations

so that the film height can be eliminated from the equations.

35
7 2 0

This assumption results in the following quasi - steady governing

equations:
V6 = —_Q_I = constant (1.3.6)
(27)
2
¥ F o [y2e o1 (2] [2 ¥ 1 Ow
6-a-t' + '('E [v 5 + ?-g6] = /\6 {I'U - .i'—] - -ﬁ[lwly o (1.3.7)

By using this assumption, it is understood that the unsteady solutions
with respect to time are not precisely accurate, but the accuracy of the

steady- state solution is not affected.

12



The following analysis for the skin friction coefficient is given
since the shear stress at the wa]l is not known. Vhen the boundary layer
on the plate is much smaller than the film thickness, i.e., developing
flow, it is assumed that the boundary layer is the same as when there is a
uniform far-field boundary. Therefore, when & > 5B’ vhere 5B is the
Blasius boundary layer thickness, the Blasius skin friction coefficient
will be employed to approximate the shear stress term. Vhen the boundary
layer reaches the free surface (i.e., § = JB), a parabolic velocity profile

is used to approximate the shear stress term. The Blasius boundary layer

thickness is given by

The Blasius skin friction coefficient is as follows:

0.664
cg =
J ¥(r - . )

v

The Blasius skin friction coefficient can also be presented in terms

of the Blasius boundary layer thickness.

3.32
iy
v

For § = 5B’ it is assumed that the velocity profile is parabolic.

c¢(Blasius) =

13



L [y i 5;] . - (1.3.8)

The coefficient of skin friction 1is

|

T -—

cf(parabolic) = 1 ”2 = — YQ' 0__6

gﬂv gﬂv [ vé }
v

The two skin friction coefficients match when
Cy (Blasius) = ¢ (parabolic)

or

5
= 1.81
Ly

The value of the skin friction will be determined in the following manner.

5.0(r-r; )
in
by =
V(r- ;)
14
6 6
0 < Ce =
EE < 1.81 f V6
v
£ 1s c; = —n08
B
W(r - r;)
v

The governing equations are nondimensionalized in the following manner

14



to simplify the analysis and to generalize the results.

Y .y g—- = § %—— = 2 t;iﬂ =7
v - 3 - - - - -
. in in in
in
2
W V., 6.
in _ .2 17in in  _
gh. ~ Frln v Rein wr. ROin
in in
6B .
v o 6> = dimensionless boundary layer thickness
in

The Reynolds number of the flow was chosen to nondimensionalize the
governing equations instead of the Ekman number because the Reynolds number

is needed when the flow is stationary.

After eliminating the dimensionless film height from the momentum
equation with the continuity equation, the dimensionless governing equation

is as follows:

S
Ve vE'e = E (1.3.9)
where
2A
Y 6in [ 1 }2 .
-, - B (1.3.10
z orr? ygh ¢ )

* 2 3 g2
i - A[—T——i-———g : !—} A [ﬁ——] for 0<% <181 (1.3.11)
o, ; 5

15



or

y 2 512 (5 A R
- A[ﬁ - L] . o.333v ¥/ {ﬁ_ for &5 1.81 (1.3.12)
) )

PG Gn 0

where the dimensionless boundary layer thickness is given by

(1.3.13)

These conditions correspond to a constant velocity across the region at the
initial time and a constant inlet velocity at all times. Since the
steady-state results are the only concern due to the constraints made on
the ma;hematical modeling (36/dt ~ 0), the specification of the initial

condition is required only for the numerical iteration scheme.

An artificial viscosity term (ﬂV%) is included 1in the governing
equation to dampen numerical oscillations in the solution (Anderson et al.,
1984). The oscillations are commonly referred to as the Gibb’s phenomenon,
which occurs near a double-valued point in the solution, such as a

hydraulic jump or a shock wave. This term reduces the numerical

16



oscillations in the immediate vicinity of the hydraulic jump, but does not

affect the numerical solution elsewhere in the domain.

1.4 HEAT TRANSFER ANALYSIS

It is desired to find the amount of heat transferred from the plate or
disk to the.‘liquid vhen the plate is heated. This analysis assumes that
the velocity of the thin film is approximated by the similarity profile
presented in equation (1.3.8). The temperature profile across the thin
film is assumed to be a quadratic function, with the coefficients
determined by the boundary conditions imposed at the surface of the plate
and the free surface. The boundary conditions are a constant heat flux at
the plate and the free surface of the liquid film is adiabatic, which
corresponds to simple heating with no evaporation at the free surface. The

boundary conditions are given as:

=0 (1.4.1)

5
K
. .ai_y.: 0

= q (1.4.2)

The temperature distribution across the thin film is

T = Tw - %y + 2—&-5 y2 (1.4.3)

The mixed- mean temperature of the film is given by the following equation

177



§
1 2 qé
T, = 13 J wIdy =T - % ¢ (1.4.4)

5K
=‘(-T—q_T—f:§ 1.4.5
' v b 8 ( )

Therefore, the heat transfer coefficient can be found in terms of the

liquid film height.

The modified Nusselt number is defined in the following manner:

e (200 -2 ) (1.4.6)

This definition has been used previously in the literature concerning thin
falling films. For a zero g situation, the Nusselt number is defined. in

terms of the liquid film thickness:
Nu =p = 2.5 (1.4.7)

For practical applications, the mixed-mean temperature of the fluid should
be known. Therefore, the following analysis is given to find the
mixed-mean temperature for the case of simple heating with no evaporation
at the free surface for plane and radial flow. This analysis follows the
same pattern as was accomplished for the momentum equation of the problem.

The conservation of energy will be integrated across the thin film in order

18



to find the mixed-mean temperature.
The conservation of energy equation is

oy (BB ) - 8 (P - Ks;;g (1.4.8)

The assumption is made that the diffusive term in the r-direction is zero.

2
JT a7 0T g°T

+ W + Vv = @ (1.4.9)
F? T Tdgr T 0y ;_2

The conservation of energy equation is integrated across the thickness
of the film by using Leibniz’s rule and the kinematic condition at the free
surface. Since the steady-state solution of the fluid velocity wvill be
known from the fluid mechanics analysis, the steady solution of the
conservation of energy equation will be found. The continuity equafion

(1.3.6) and the conservation of emergy equation are

rAV6 = ——g*x = constant

@

- e () 1410

.Implementing'the heat flux boundary conditions corresponding to simple

heating with no evaporation at the free surface results in the following

equation.

19



o1 )
b [2rx (1.4.11)

v
r oy

This equation can be integrated directly to determine the difference in the

mixed- mean temperature between the inlet and any point in the r-direction.

2
A r: 44
T, - T, . = 6-85 [r . -15] (1.4.12)
b b,in oy r

1.5 NUMERICAL SOLUTION PROCEDURE

Due to the similarity between the hydraulic jump and the shock wave in gas
dynamics, the MacCormack explicit method (Anderson et al., 1984), which is
quite often used for the solution of compressible flow problems, will be
used in the present numerical analysis of this incompressible film flow.
Since it is an explicit method, the unknown variables are found in terms of
known quantities, as opposed to implicit methods which must solve a matrix

equation to obtain the solution of the problem.
The governing equation for the present problem is equation (1.3.9):
S
L V¢ G§ = H

The forward-predictor finite-difference equation for the governing

equation is forward in time and space. )
n+l _ yn A At [an n n B
vatd oyl [1 s Y [Gk+1 - Gk]] . ATE] (1.5.1)

20



The finite-difference equation based on the _predicted solution using a
forvard- time, backward- space differencing scheme is:

—T ’
vy ) =

The corrected solution is the arithmetic average of the past and

predicted solutions.

n+l _ 1 n g+l “A A7 [ on+l o0+l n+1
Ve T3 { Vit Y [1 - [ A ]] + A7H } (1.5.2)

Since the forward-predictor velocity 1is in terms of a forward-space
approximation, an outlet boundary condition on  the velocity 1is needed.
For the case of one g, it is assumed that the Froude number at the outlet
is unity, which 1s a common boundary condition when a liquid falls over an
edge because the liquid accelerates from a subcritical velocity to a
supercritical velocity through the critical velocity. It was
experimentally observed, hovever, that for thin films the surface tension
greatly alters this boundary condition. The Froude number at the inlet and

the dimensionless velocity at the outlet are related as follows:

- [%il‘_]k/zh. -2/3 (1.5.3)

in
{out
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For the zero g case and when the Rossby number is Ro < 1, the slope of

the dimensionless velocity at the last node is set equal to the slope at

the next to last node for the outlet boundary condition.

The solution of the governing equation using MacCormack’s method proceeds

as follows:

The parameters pertaining to the numerical domain and the 1inlet and

outlet boundary conditions are specified.

The initial velocity distribution is input to the program.

The variables € and H are computed using the velocity profile at the

old time step.

The velocity distribution at the midpoint time step is calculated 1in
terms of the velocity, G, and H at the old time step. An outlet
boundary condition is needed in this step because of the forward- space

approximation.

The variables G and H are computed again by using the velocity profile

at the midpoint time step.

The velocity distribution at the new time step 1is calculated. The

inlet boundary condition 1is used in this step because of the

backward- space approximation.

22



. The values of the velocity distribution at the new time step are used

as the initial velocity profile for the next iteration.
. The process is repeated until steady values are reached.

In explicit schemes, the magnitude of the time step is chosen based
upon a Courant number, which is defined for the present problem in the

following manner.

C - At [w + rw] _ AT (1 + Ro-l)
W A€

In this study, the grid size was set to a specific value and the time
step was varied to avoid convergence difficulties. The largest time step
that did not lead to a divergent solution was then used in the
calculations. The following table is a general guideline which was used to

determine the time step size.

Flow situation Courant number, C
Plane flow < 1.0
Radial flow < 0.5

Radial flow with rotation < 0.1

One hundred grids were used in the plane flow calculations. For radial
flow, 500 grids were uscd because the governing equation was very lightly
damped, so that the numerical oscillations were excessive with only 100

grids. There was no significant change (< 0.1 percent) in the numerical



results when the aforementioned grid specifications were reduced by

one-half to check the grid independence of the solution.

1.6 RESULTS AND DISCUSSION

The thicknesses of free surface films in plane and radial flow have
been calculated numerically. In addition, the Nusselt number  was
calculated for simple heating with no evaporation at the free surface with
water as the working fluid. The results of the one-dimensional
quasi-steady governing equation of fluid motion are given in Figs. (1.3 -
1.7). ‘The heat transfer results are shown in Fig. 1.8 for plane and radial

flow in one g and in Fig. 1.9 for radial flow with solid-body rotation.

Figure 1.3 shows the solution for channel flow as it progresses in
time. It can be seen that the supercritical portion of the flow develops
very quickly while the subcritical region and the exact location of -the
hydraulic jump takes more time to reach the steady state. The Gibb’s
phenomenon can easily be noticed in the transient solutions of the
governing equation, but the oscillations become more damped in the steady
- solution. Due to the assumptions pertaining to the governing equations, the
transient solutions of the problem are not accurate, but the steady
solutions should be acceptable. In the following figures, only the steady-
state solutions are given. It is clear that the velocity profile in the
immediate vicinityrof the hydraulic jump is not a good representation of
the flow field due to the transient nature of the jump. However, this does
not affect the numerical results in the supercritical or subcriticél

regions as well as the location of the jump. ~ In order to capture the
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details of the jump, a two-dimensional model using body- fitting coordinates

is needed.

As can be seen in Fig. 1.3, the film thickness increases along the
plate as the fluid travels away from the inlet of the region. The fluid is
prevented from rolling back due to the action of gravity by the momentum of
the fluid in the main direction of the flow. The reason that the film
thickness increases with distance in the supercritical region is that the
friction at the interface between the fluid and the plate slows the fluid,

vhich translates into an increase in the film thickness due to continuity.

The effects of changing the inlet Reynolds number and the inlet Froude
number in plane flow are presented in Fig. 1.4. The graphs in the
left-hand column of the legend show the dimensionless liquid height when
the Froude number is held at Frin = 10.0 and the Reynolds number is varied
for Rein - 25.0, 50.0, and 75.0. By increasing the inlet Reynolds number,
the location of the hydraulic jump moves downstream and the dimensionless
height of the liquid at all points in the domain decreases. Physically,
increasing the Reynolds number can be interpreted as increasing the
inertial forces on the fluid, so one would intuitively expect that the
velocity of the fluid would increase as the Reynolds number 1increases.
This increase in the fluid velocity is correlated to a decrease in the film

thickness through the continuity equation.

The graphs in the right-hand column of the legend in Fig. 1.4 present
the dimensionless liquid film height when the Reynolds number is constant

at Rein = 100.0 and the Froude number is varied for Frin = 5.0, 7.0, and
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9.0. The location of the hydraulic jump moves downstream when the inlet
Froude number fncreases, which has been seen in qualitative experiments.
The dimensionless height of the liquid in the supercritical region
generally lies along the same line because the viscous forces are not
changing in this case. Increasing the Froude number can be thought of as
decreasing the effect of the gravitational force, so by increasing the
inlet Froude number, the flow approaches the zero g case. In the 2zero g
situation, as shown in Fig. 1.5 for plane and radial flow, the hydraulic
jump does not occur because the flow at all points in the domain 1is
supercritical, since the Froude number approaches infinity in zero g. In

Fig. 1.5, the dimensionless film height decreases as the Reynolds number

increases because the inertial forces on the film flow are greater.

In Fig. 1.6, the inlet Froude number and the inlet Reynolds number in
radial flow are varied parametrically. Vhen the inlet Froude number is
held constant and the Reynolds number is increased, the behavior of the
flow is similar to.plane flow in that the film thickness decreases and the
hydraulic jump moves downstream. The film thickness in the supercritical
region, hovever, decreases below the initial thickness downstream from the
. inlet. at high Reynolds numbers. This is due to the increase in the flow
area downstream as the flow spreads .out radially. After this initial
decrease in the film thickness, the film height increases in the
supercritical region even though the flow is spreading out radially. This
is due to the fact that the frictional effect is greater than the effect
due to the increase in the flow area. The friction at the plate slows down
the flow and increases the film thickness. As shown by Rahman et al.

(1989), the liquid film height in the supercritical region may or may not
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have a minimum value other than the inlet _height, depending upon the

coefficient of friction at the plate and the inlet Froude number.

The effect of increasing the Froude number while the Reynolds number
remains constant in radial flow is also shown in Fig. 1.6. The
supercritical regions of the three cases overlap as in channel flow because
the viscous forces on the liquid film are not changing. The hydraulic jump

is moved downstream from the inlet as the Froude number is increased.

Figure 1.7 presents the effect of solid-body rotation on  the
dimensionless liquid film height in radial flow for one g and zero g. The
Rossby number of Ro, = 1010 signifies that the inertial forces are
dominant in the flow, so that a profile similar to the previous results is
obtained. For the other cases presented where the Rossby number is Roin =
1071 and 10'2, the hydraulic jump is completely washed out and the
thickness of the fluid decreases at all points in the domain, which is
physically realisticj The results for the low Bossby numbers also show
that the dimensionless liquid film height is the same whether the
gravitational body force is present or not. This is due to the fact that
‘the centrifugal body force in this case 1s much greater than the

gravitational body force.

Figure 1.8 presents the Nusselt number versus the dimensionless
distance for plane and radial flow under one g. For these calculations,
the values in equation (1.4.6) were chosen to be b;p = 2.54 x 1074 m,
K=0.682 V/m-K, v = 2.90 x 1077 mz/s, and g = 9.81 m/s2. The values of

the thermal conductivity and the kinematic viscosity correspond to water at
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373 K. As would be expected, the heat transfer increases as the Beynolds
number increases because the height of the film decreases at all points

along the plate.

Figure 1.9 presents the Nusselt number for the case of solid-body
rotation in radial flow under one g. The heat transfer to the 1liquid 1in
this case is two orders of magnitude higher than that without rotation

because the liquid film becomes extremely thin and the velocity of the film

is very high.

It should be noted that while the heat transfer results that were
presented are for thin films under one g, the heat transfer to thin films

in a zero g environment can also be calculated with equation (1.4.5).

1.7 CONCLUSIONS

In studying plane and radigl flows experimentally, it can be seen that
the flow can experience a hydraulic jump. This is a "mixed" flow situation
vhere the flow changes from a supercritical condition to a subcritical
condition with a sudden inc:gase_ointhe;liquid height and a decrease in the
velocity of the liquid. The similarity between the hydraulic jump and the
shock wave in gas dynamics suggested the use of the approach where the flow
is modeled as a transient phenomenon and allowed to march in time to
achieve the desired steady-state results. Therefore, the equations of
motion including the transient terms were integrated across the thin liquid
layer, nondimensionalized, and discretized using the MNacCormack explicit

method to solve for the velocity and height of the liquid film in Cartesian
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and radial coordinates. Also, the steady-state-heat transfer from the
plate to the liquid was examined for the case of simple heating with no
evaporation at the free surface. Since the numerical method of solution is

explicit, large amounts of computer storage were not necessary.

For plane flow in one g, a hydraulic jump was predicted which could be
forced away from the inlet by increasing the initial Froude number or
Reynolds number, which agrees with what has been found in qualitative

experiments. In zero g, the liquid film height increased monotonically, so

that a hydraulic jump was not predicted.

For radial flow in one g, the liquid film height first decreased for
high Reynolds numbers due to the increase of the flow area, and then
increased to form a hydraulic jump. The hydraulic jump in radial flow
could also be forced away from the inlet by increasing the initial Froude
number or Reynolds number. In zero g, the hydraulic jump was not predicted
in radial flow. The effect of solid-body rotation for radial flow in one g
wvas found to thin the iiquid film and "wash out" the hydraulic jump, which
is physically realistic. The dimensionless film thickness under one g and
- zero g was the same for solid-body rotation because the centrifugal force
vas much greater than the gravitational body force. The heat transfer from
the rotating disk was found to increase dramatically when under solid-body
rotation compared to no rotation because the liquid film is very thin and

moves with a high velocity.
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Section II

FIPERTNENTAL NEASUREMENT OF FILM HEIGHT AND VISUALIZATION OF FLOV

2.1 SUNMNARY

In this experimental study, the thickness of a thin liquid film with a
free surface on a stationary and rotating disk is measured with a
non- obtrusive capacitance technique. The measurements are taken wvhen the
rotational speed ranges from O - 300 RPM and the flow rate varies from
7.0 - 15.0 LPM. A photographic study of the thin liquid film was also
performed and the results are presented herein. Vhen the disk is
stationary, a hydraulic jump is formed on the disk, which separates the
supercritical and subcritical regions. As the flow rate of the fluid
increases, the hydraulic jump is moved away from the center of the disk.
The 1liquid film thickness in the supercritical region is affected by the
inertial and frictional forces on the fluid and by the radial spreading of
the film across the disk. The film thickness in the subcritical region 1is
mainly determined by the surface tension of the fluid because the radius of
curvature at the outer edge of the disk, which is nearly constant for flow
rates up to approximately 13.0 LPM. VWhen the disk is rotating, the film
thickness depends upon the frictional, inertial, and centrifugal forces
acting on the liquid. In the region near the center of the disk, the
effects of friction and inertia are greater than that due to the
centrifugal force, while at the outer edge of the disk the opposite 1is
true. A flow visualization study was carried out to examine the nature of

the free surface of the thin liquid film when the disk is stationmary and
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rotating. Vhen the disk is stationary, surface vaves were present in the
supercritical and subcritical regions at all flow rates studied. The waves
in the supercritical region ﬂave smaller amplitudes than those in the
subcritical region. At the hydraulic jump, a "roller" with a circular
cross section was found at low flow rates. As the flow rate increased, the
roller flattened until it merged with the hydraulic jump. The surface
tension at the edge of the disk held the thickness at this location nearly
constant, except at higher flow rates where the inertial forces of the
fluid became greater than the surface tension and decreased the height of
the fluid at the edge. This effect was also present at low rotational
speeds, where the surface tension created a standing wave at the edge of
the disk. As the rotational speed increased, the film changed from the
wavy- laminar region to a region in which waves ran nearly radially across
the disk on top of a thin substrate of fluid. These waves appeared to be

the mechanism through which most of the fluid drained from the disk.

2.2 INTRODUCTION

The heat transfer from a rotating disk to a thin film has been

_recognized in the past to be superior to conventional falling films because

the centrifugal force tends. to thin and accelerate the film, which
translates into higher heat transfer coefficiemts. As a first step 1in
determining the heat transfer to a thin film, it is proposed to
experimentally study the hydrodynamic characteristics of a thin film with a
free surface flowing over stationary and rotating disks. The present
experimental investigation is directed toward the use of a thin film on a

rotating disk to promote the absorption of a vapor into the liquid on the
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disk. Specifically, the absorber of a vspace-based vapor- absorption
refrigeration sfstem will use a liquid film which is thinned by the
centrifugal force on a rotating disk to enhance the absorption of the
refrigerant vapor into the absorbent becauée a falling film cannot be
produced in a microgravity environment. The vapor-absorption cycle is more
appropriate for a microgravity application because the vapor compressor is

replaced by a liquid pump, vhich is lighter, requires less maintenance, and

is easier to manufacture for space-based applications.

To properly study any problem, the previous studies on the subject
must be thoroughly investigated. Each of the following researchers have
experimentally examined the flow of thin liquid films. A brief description

of their methods and conclusions are provided.

Vatson (1964) analysed a free-falling jet vhich impinges on a
horizontal plane. The jet spreads out radially in a thin film and is
surrounded_by a hydraulic jump, outside of which the thickness of the
liquid is much greater. Vatson experimentally measured the diameter of the
hydraulic jump (rl) with dividers, the depth of the fluid outside the jump

(d) with a point gage, and the flow rate (Q) with a measuring jar and stop
watch. The experimental data ranged from 25.4 < r, < 177.8 mm, 3.30 < d <
16.5 mm, and 0.73 < { < 26.8 LPM. The jet Reynolds number Re = {/av ranged
from 7 x 103 to 1.2 x 105, where a is the radius of the jet. The
theoretical results of the location of the hydraulic jump and the depth of

the liquid outside the jump were compared to experimental results with a

satisfactory agreement.
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Espig and Hoyle (1965) experimentally measured the maximum thickness
of a liquid film‘on a horizontal rotating disk. The maximum thickness is
the height of the film which is measured to the crest of the waves on the
film. Measurements were taken by using a needle probe which was lowered
vith a vernier, which completed an electrical circuit when the probe
touched the film surface. The Reynolds number Re = (4 Q/7uD) ranged from
10 to 600, where  is the mass flow rate, 4 is the dynamic viscosity, and
D/2 is the distance from the center of the disk. The flow conditions were
also observed visually with a stroboscope which showed rivulets,
circumferential waves, and helical vaves. The experimental results vere in

agreement with the theoretical and experimental results of previous

authors.

Butuzov and Rifert (1972) experimentally measured the heat transfer
of condensing steam onto one side of a rotating copper disk, the opposite
side of the disk being cooled with a condenser. The results for the
average heat transfer coefficient versus the disk angular speed were
presented. The disk speed varied from 10 to 224 rad/sec and the heat flux
ranged from 2 x 10% to 19 x 10 V/m2. The experimental Reynolds number of
the condensate was compared to the theoretical results with an agreement to
within 5 - 10 percent. The theoretical results were obtained by using a
previously derived equation for the thickness of a laminar liquid film on a

rotating disk. This was related to the flow rate of the condensate on the

disk for steam condensation.

Charvat et al. (1972) studied the effects of varying the viscosity and

surface tension of a thin liquid film on a rotating glass plate. The film
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thickness was determined by the infra-red absgrption,technique, and it was
found that the ' thickness varied from 1 - 150 gm for flow rates up to
0.78 LPM. Concentric, spiral, and irregular waves were found on the
surface of the film, and were strongly affected by varying the viscosity

(1 - 2.5 cP) and surface tension (20 - 72 dynes/cm).

Matsumoto et al. (1973) compared various theoretical solutions of
previous authors with a polynomial approximation for the thickness of a
thin liquid film on a rotating disk. The authors also devised an
experiment where constant temperature liquid was supplied to the center of
a rotating disk by a feed nozzle above the disk. The liquid film height
vas measured along the radius by a needle attached to two micrometer
screws. The kinematic viscosity of the liquid ranged from 9.61 to 58.3 ¢S,
the rotational speed varied from 250 to 1500 RPM, and the flow rate ranged
from 0.3 to 1.87 LPM. It was concluded that a polynomial of fourth degree

or higher agreed very well with the experimental results.

Niyasaka (1974) coﬁparedAthe results of an experimental study with
those of a theoretical study of the thickness of a thin viscous film on a
~_.rotating digk.,.The;;iquid_film vas ggneratgd with a jet of liquid falling
onto the center of a horizontal rotating disk. The film height was
measured by comparing the resistance of the liquid on the disk with that of
a standard thickness of the liquid, which resulted in an accuracy of # 0.02
mmn. The jet Reynolds number was varied from 200 to 18,000. The theoretical
values were obtained by solving the governing equations of motion wvith the
boundary- layer approximation. The theoretical results include the values

of the liquid film when viscosity is and is not present. It was concluded
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that the theoretical values were in agreement with the experimental

results.

Ishigai et al. (1977) experimentally measured the liquid film
thickness and heat transfer from a thin film generated by an impinging
liquid jet onto a perpendicular surface. The film thickness was measured
with a needle and micrometer arrahgement, and a voltage source applied to
the surface of the plate. Vhen the needle touched the surface of the film
an electric circuit was completed, which was read by an oscilloscope. The
flow rate ranged from 3.0 to 30 LPX. The experimental data of the liquid
film height was compared to the analytical equation given by Watson (1964)

with satisfactory results.

Labus and DeWitt (1978) experimentally examined the flow patterns of
the free surface of an impinging jet of liquid on a disk perpendicular to
the jet in zero gravity. This was achieved in a drop facility in which a
-5

2.2 second period of 10 g’s could be sustained. Flow visualization

studies revealed that surface tension and inertia were the major forces
acting on the liquid.

Craik et al. (1981) experimentally studied the circular hydraulic jump
formed by an impinging jet of liquid onm a horizontal plate. The liquid
film thickness in the region near the hydraulic jump was measured using a
light-absorption technique with a laser and a strong dye. The parameters
which were varied are as follows: the flow rate, 0.27 to 1.56 LP¥; the jet
radius, 1.0 to 2.15 mm; the jump radius, 12.0 to 40.0 mm; and the outer

depth, 1.8 to 3.5 mm. The experimental data was compared to Watson’s
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(1964) theory with unsatisfactory results. Flow visyalization studies were

performed, and an'eddy just downstream of the hydraulic jump was found.

Muzhilko et al. (1983) experimentally measured the liquid film
thickness on a horizontal rotating disk where the liquid is introduced onto
the center of the disk by an impinging jet. The film thickness was
measured Sy sensing electrodes embedded into the surface of the disk, whose
resistance is a function of the film thickness. The mean film thickness
vas measured at radii of 30, 60, and 90 mm. The angular velocity ranged
from 95 to 1900 RPY, and the flow rate varied from 0.04 to 1.2 LPN. The
mean film thickness results were correlated by an empirical equation which

predicts the data to within #15 percent in the laminar-wavy region.

Carper et al. (1986) experimentally studied the heat transfer from one
side of a rotating disk with an approximately uniform surface temperature.
The liquid was supplied to the center of the disk by a nozzle. The average
Nusselt number was presented for the following parameters: the rotational
Reynolds number (16,000 < Rer = tzu < 545,000), the Prandtl number
(87 < Pr < 400), and the impinging jet Reynolds number (180 < Rej = de/u <
1300). = D is the disk diameter, & is the angular velocity, v is the
kinematic viscosity, d is the jet nozzle diameter, and Uj is the average
jet velocity. An empirical equation for the average Nusselt number 1is

derived by a multiple linear regression analysis which represents 95

percent of the data to within #30 percent.

Most of the previous experimental investigations were concerned with

thin liquid films which were generated by an impinging jet onto the center
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of the rotating or stationary disk. In the present study, the liquid film
is generated on the rotating disk by a circular collar which directs the
pressurized liquid onto the center of the rotating disk with a constant
initial height and velocity. This collar arrangement can be extended to
collars on each side of the disk, and then multiple disks can be stacked
onto a rotating pipe so that a very large surface area for absorption can
exist in a small volume. Also, this arrangement is amenable to numerical

simulation because of the known inlet conditionms.

The effect of two parameters on the thickness of the liquid film were
studied: the flow rate (7.0-15.0 LPM) and the rotational speed (0-300 RPN)
at the steady state. The liquid film thickness was measured with a
non- obtrusive capacitance probe and digital micrometer arrangement. The
characteristics of the waves on the free surface were studied with a video

camera at low and high shutter speeds.

2.3 EXPERIMENTAL SETUP

The purpose. of this experiment was to measure the liquid film
thickness on a_stationa;y.and’rqtating horizontal disk where the liquid
emanates from a pressurized véssel iﬁ the center of the disk. In the
future, this apparatus can also be used to determine the heat transfer from
the heatgd disk to the thin liquid film when the disk is stationary and
rotating. De- ionized water was used as the working fluid because the

properties are well-known and it 1s non-toxic.



The schematic of the experimental setup is shown in Fig. 2.1. The
specifications 6f all of the equipment used in this experiment are listed
in Appendix B following this report. The 406.4 mm dia. rotating disk [1]
is mounted on a high-precision stainless steel spindle [3] which is hollow
from the 101.6 mm dia. stainless steel collar [2] to the rotating union
[21]. The rotating disk is made of aluminum with a surface finish of
3.8 x 104 an. The vorking fluid flows from the circulating pump [25]
through the stationary pipe to the rotating union, which couples the
stationary pipe and the hollow spindle. The liquid then passes up above
the rotating disk and through eight.3.17 mm dia. radial holes in the hollow
rotating spindle, which are covered by the collar. The collar directs the
eight liquid streams down and outwardly so that the fluid is directed onto
the top side of the disk with a velocity only in the radial direction and
with a uniform initial height. The collar also makes sure that the height
of the 1liquid at the collar does not change with respect to the azimuthal
direction. The gap height between the bottom face of the collar and the
top of the disk (0.267 mm) is set by a stainless steel shim which
separates them. After thé fluid flows oier the disk, it is collected by
the water tank [20] to be recirculated. The flow rate of the liquid can be
varied by the large and small metering valves [26 and 27], which act as the
gross and fine adjustments. The volumetric flow rate was determined with
the turbine flow sensor [28] and the digital flow meter [29]. The
rotational speed was varied by the frequency inverter speed controller [5]
attached to the electric motor [4] and is read with the rotary encoder [7]

and the speedometer [8].

In order to decrease the vibrations in the system, it is mounted onto
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a machine table. The total mass of the frame and the machine table is
approximately 450 kg, which helps to damp out oscillationms. The table is
also fitted with four vibration ﬁ;unts which are made of neoprene and are
approximately 25 mm thick x 75 mm in diameter. The system is located in
the corner of the building, which aids in decreasing the vibrations seen in

the laboratory by being very close to the foundation.

To measure the height of the liquid film, a non- obtrusive measurement
tqchnique vas devised as shown in Fig. 2.1. A non-contact capacitance
sensor [9] is used to locate the surface of the disk and the surface of the
liquid. The capacitance semsor directly relates the strength of the
electric field to the air gap between the sensor and the target. This
relation is linear within the stated range of the probe. The sensor 1is
attached to a digital positiomer [11] by which the sensor can be raised or
lowvered. The probe and digital positioner are both mounted onto a linear
slide [13] which moves the sensor along the radius of the disk. The radial
location of the capacitance probe is measured by a linear potentiometer
attached to the linear slide. The procedure to measure the 1liquid film

height is described below. The procedure is shown graphically in Fig. 2.2.

1. The capacitance probe was calibrated té the digital micrometer by
bringing the probe down until it touched the disk very lightly, which
could be seen with a light directed behind the probe. This is the
datum 1 line shown in Fig. 2.2. The capacitance sensor was then
zeroed at this point with the offset adjustment. The capacitance
probe was raised slightly above the disk, where the digital micrometer

vas zeroed. The probe was then raised until it read the maximum value

47



Dry Disk

Radial Direction

Probe Wet Disk
f o I "~ Datum 3
h

——

Datum 2

b Datum 1

! Liquid Film

Surface

§(r) = b +ah(r) + h'{r) - h'(r)

Figure 2.2. Liquid film height measurement



of its range. The value read on the capacitance sensor readout [10]
vas compared to what was shown on the digital micrometer readout [12].
Any discrepancy could be‘ eliminated by a gain adjustment which is
supplied on the capacitance sensor readout. This set the slope of the
linear curve which relates the electric strength to the height of the
air gap. It was found that the digital micrometer does have a small

amount of backlash (< 0.008 mm), but this could eliminated by raising

the probe to the desired location instead of lowering it.

Vith the disk dry, the capacitance probe was then moved to the datum 2
line with the digital micrometer, which was set to zero at this
location. The height at the inner radius was set to an arbitrary

value h, which is within the range of the probe.

The probe was moved along the radius to measure the deviation of the

disk from the datum 1, which is called the tare data (h + Ah).

The probe was then raised to datum 3. The liquid flow was started and
allowed to reach the steady state. The distance between datum 2 and
. .datum 3 (h’) was shown on the digital micrometer. The distance from
datum 3 to the liquid film surface (h") was measured by the
capacitance probe. The liquid film height é along the radius of the

disk can be found with the following equation:
6 =h’+ (h + &h) - h"

The capacitance sensor readout [10] is equipped with a 10 VDC output
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which is proportional to the air gap between the probe and the target.
This voltage signhl was sampled by a Fluke 22804 Datalogger at a rate of
one every two seconds to average %he readings and to determine the standard
deviation of each reading. This procedure vas necessary due to the waves
present on the surface of the liquid film. Thus, the liquid film height
reported here is actually the mean film height. Also, the capacitance
probe has a sensing spot which has a diameter of 11.28 mm, so a given
reading was assigned to the radial location underneath the center of the
sensing spot. When the disk was rotating, the same procedure was followed
except that the tare data (h + Ah) and the air gap measurements between the

probe and the free surface (h") were averaged in the azimuthal direction as

well.

The heat transfer from the heated disk to the liquid will be studied
in future experiments by using a 6 KV etched foil heater [15] between the
underside of the disk [1] and the ceramic disk insulator (16]. The heater
is held between the plate and the insulation by screws that are through the
insulation and are threaded into the pléte. The heater is supplied with a
piece of backing paper that will be placed between the heater and the
insulation to assure that the heater is evenly compressed against the
plate. An etched foil heater was chosen for this purpose due to the
improved uniformity of the heat flux compared to a conventional wire

heater.

Since the disk is able to rotate, a sealed slip-ring capsule (19] is
employed to pass the power from the stationary source [23 and 24] to the

disk, and to pass thermocouple readings from the disk to the digital
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thermometer [18]. To avoid problems with creating. extra junctions on the
thermocouples moﬁnted on the rotating disk, the slip-ring capsule was
manufactured with six constantan wire circuits for thermocouples. In this
way, an extraneous junction will not be created because a constantan wire
and a copper wire coming from two separate slip rings will be used to
create the thermocouple bead. The copper and constantan wires from the
stationary part of the slip rings will be directly attached to the digital
thermometer. The only extraneous junction is on the brushes and the gold
slip rings. Since the brushes and the gold slip rings are very small, these
junctions are nearly isothermal, so the contribution due to these junctions
should be negligible. Thermocouples [17] mounted in holes in the disk
along one radius will monitor the temperature of the disk while other
thermocouples will measure the temperature of the liquid before and after
1t flows over the disk. The thermocouples in the holes in the plate will
be a distance of 1.58 mm from the surface of the disk in order to measure
the interface temperature as closely as possible. The thermocouples will
be cemented into the holes with a thermally conductive epoxy which will not
be degraded by the operating fluid. The mean temperature of the fluid at
different radial locations will be measured by a sheathed thermocouple
which will be moved with the digital micrometer [11] and the linear slide
(13]. Since the liquid is in a closed system, a heat exchanger [22] will

be used to keep the temperature of the inlet water at a constant value.

2.4 ERBROR ANALYSIS

The errors in the liquid film measurements are described and quantified,

which involve two instruments: the digital micrometer, and the capacitance
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sensor. A brief summary of the method to determine the error will now be
given. A more detailed description is presented in Appendix C and a full

discussion on error analysis is given by Miller (1989).

The 1liquid film height is given by the following equation shown in

Fig. 2.2:
§=h"+ (h+ Ah) - R" (2.4.1)

Following the standard error analysjs procedures, the root- sum- square error

of the system is given by

. = J(Ah’)Q + [A(h + AR)]% & (4RM)2 (2.4.2)

I'ss

The first term in equation (2.4.2) 1is the stated accuracy of the
digital micrometer, which was calibrated at the factory with an NBS
traceable Mark-Tech Laser Gage Model 7980. The maximum deviation over the
range of movement reported on the calibration certificate is 0.001 mm,

which was taken as the error of the instrument.

The second term involves the accuracy of the capacitance sensor, which
is given by the manufacturer to be 0.1 percent of the range when
calibrated to a known standard, which was the digital micrometer. The
capacitance probe was calibrated at the beginning of each test against the
digital micrometer as described in Sec. 2.3. The maximum deviation from

linearity of the capacitance probe was 0.008 mm. This value was added to
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the stated accuracy of the probe.

The second term in equation (2.4.2) takes on different values when the
disk is stationary or rotating. Vhen stationary, the second term is the
accuracy of the capacitance sensor given by the manufacturer plus the

maximum deviation from linearity, which is 0.01 mm.

Vhen the disk is rotating, the error due to the disk not being
perfectly flat and the wobble caused by the bearings must be taken into
account. This error is given by the sum of the standard deviation of the
air gap measurement between the probe and the dry disk taken at the outer
edge of the disk (where it is maximum) and the error of the capacitance
sensor. MNultiple populations with an increasing number of simples were
taken and the means were compared with a two-tailed z-test to give a sample
number which ensures a mean at the 95 percent confidence level. The
standard deviation of the dry rotating disk with 50 samples is ¢ = 0.02 mm,

so the error in the second term in equation (2.4.2) is 0.03 mm.

The last term in equation (2.4.2) is again the error associated with
the capacitance sensor. Due to the fact that the mean film thickness is
being reported, further comments concerning the third term in equation
(2.4.2) are necessary. At all flow rates and rotational speeds, waves
were present on the free surface of the liquid film. A test was performed
to compare the means of different numbers of samples in the subcritical and
supercritical regions to determine a suitable number of data points for a
mean which falls in the 95 percent confidence level. For subcritical flow,

a normal z-test was performed, and it was found that for 125 and 250
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samples, the means were equal at the 95 percent confidence level, so 250
samples  were ‘taken for each data point reported. Likewise, for
supercritical flow 80 samples wege taken in order to achieve the same
confidence level. A similar test performed when the disk was rotating
showed that the number of samples needed for the 95 percent confidence

level was the same as that for the stationary supercritical region. The

root- sum- square error in the liquid film height measurement is as follows:

Stationary disk - Erss = #0.01 mm

Rotating disk - Erss = £0.03 mm

The gap between the collar and the disk was measured with feeler gages

and the error in this data point was found to be #0.01 mm.

2.5 RESULTS AND DISCUSSION

2.5.1 Liquid Film Thickness Measurements

The mean thickness of a liquid film of de-ionized water as it flows

across a horizontal disk has been measured experimentally. The flow rate

ranged from 7.0 - 15.0 LPX and the rotational rate varied from 0 - 300
RPM. . Figures 2.3 - 2.8 present the film thickness when the rotational
speed is held constant and the flow rate is varied. Figures 2.9 - 2.11

show the film thickness when the flow rate 1is held constant and the
rotational speed is changed. In all of the measurements presented in this
report, a duplicate measurement was made and the two runs were within 5
percent of each other, which is within the experimental error of the {film

thickness measurement system.
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Figure 2.3 shows the film thickness wheg the disk is statiomary in
both the superéritical and sybcritical regions. As the flow rate
increases, the hydraulic jump is moved toward the outer edge of the disk.
The hydraulic jump is the sudden increase in the film thickness and is
actually a momentum balance between the supercritical flow and the
subcritical flow. The exact shape of the jump could not be determined with
the present measuring instrument because if an attempt was made to measure
the film thickness in the supercritical region very near the jump, the free
surface of the subcritical region would touch the side of the capacitance
sensor and saturate the signal. Therefore, the straight line without data

points between the supercritical and subcritical regions is where the

hydraulic jump resided.

The first data point at 50.8 mm is the gap height between the collar
and the rotating disk (0.267 mm). The next data point at 76.2 mm is the
first point which could be read by the capacitance probe. Therefore, the
line connecting these two points is simply a linear interpolation and no
conclusiéns can be drawn concerning this region. Even though the outer
radius of the disk is 203.2 mm, measurements are not reported past 195.6 mm
_because the sensing spot of the capacitance semsor vas over the edge of the

disk.

In Fig. 2.3, it can be seen that the film is nearly horizontal in part
of the subcritical region when the flow rate is 7.0 LPY and then drops off
near the edge of the disk. This decrease in the film thickness at the edge
is due to the acceleration of the flow as the liquid exits the disk. The

radius of curvature at the edge was nearly constant up to approximately
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13.0 LPM and produces significant surface tegsion effects. This can be
noticed 1in Fig: 2.3 by the curves showing 7.0 - 13.0 LPM, which approach
the same film thickness near the‘edge of the disk. For 15.0 LPM, the
hydraulic jump was nearly pushed off the edge of the disk, so it did not
reach the same height as the curves with lower flow rates. Figure 2.3 also
shows that the liquid film thickness in the subcritical region is an order

greater than that in the supercritical region.

In Fig. 2.4, the film thickness in the supercritical region when the
disk was stationary can be seen to increase along the radius of the disk.
In the supercritical region, the major forces on the liquid film are those
due to inertia and friction. Since the frictional forces tend to slow the

liquid, the film thickness increases due to continuity.

Figure 2.4 also shows that the film thickness in the supercritical
region may increase monotonically or may first decrease and then increase
downstream. This decrease in the film thickness is due to the radial
spreading of the fluid as it travels across the disk. This effect is then
overtaken by that due to friction, at which point the film thickness
increases. For flow rates of 11.0 LPM or less, the effect of friction is
dominant over the effect of the spreading of the liquid, so the liquid
increases monotonically. As the flow rate (or Reynolds number) increases,
the film thickness decreases because the effect of the radial spreading of

the film becomes greater than the effect of friction.

The film thickness for different flow rates when the rotational speed

is 55 RPM is shown in Fig. 2.5. Up to approximately 120 mm the flow has
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the same trend as the supercritical flow of t@e stationary disk: as the
flow rate increises, the film thickness decreases due to the effect of the
radial spreading of the flow ove;taking the effect of friction. Past this
region, however, the profile takes on a very different appearance. For 7.0
LPM, the film thickness begins to flatten out and then decrease past 120
mn. When the disk is rotating, the dominant forces on the film are as
follows: frictional, inertial, and centrifugal. Near the center of the
disk, the frictional and inertial forces are prevalent. Closer to the edge
of the disk the centrifugal force comes into play. Therefore, near the
edge of the disk one would expect that the film vould accelerate because of
the centrifugal force and become thinner due to continuity. It can also be
seen in Fig. 2.5 that as the flow rate increases, the point where the
curves begin to flatten due to centrifugal force travels downstream.  This
is because the effect of inertia on the flow is dominant over the effect of
the centrifugal force for a longer distance. Near the edge of the disk,
the film thickness increases dramatically due to the effect of surface
tension at the edge. This is actually a fractional hydraulic jump which
does not reach its full height before the edge of the disk. As the flow
rate increases, the height of this jump decreases because the force due to

~ the inertia of the liquid overcomes the force due to surface tension.

Figure 2.6 presents the film thickness measurements for different flow
rates when the rotational speed is 100 RPM. In this graph, it can be seen
that the hydraulic jump near the edge of the disk is not present because
the centrifugal force is greater than the force due to surface tension.
Also, the curves have the same trend as 1in Fig. 2.5 vhere the film

thickness first increases because of friction and then decreases due to the
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centrifugal force. A further examination of this figure shows that the
curve of 15.0 LPN lies above those of 11.0 LPX and 13.0 LPX in the region
vhere the film thickness is increasing. A possible reason for this is that

the difference between these curves is on the order of the experimental

error in the measurement system.

Figures 2.7 and 2.8 present the film thickness when the flow rate is
varied from 7.0 to 15.0 LPK for rotational speeds of 200 and 300 RPN,
respectively. Again, the same trend is evident where the film thickness
first increases due to frictional effects and then decreases due to the
effect of centrifugal force. In comparing these two figures, it can be
seen that the radial location where the effect of centrifugal force begins
to dominate the flow moves toward the center of the disk as the rotational
speed increases. This is shown further in Figs. 2.9 - 2.11 where the flow
rate is held constant (7.0, 11.0, and 15.0 LPM, respectively) and the
rotational speed is varied from 55 to 300 RPM. In Pig. 2.9, as the
rotational speed increases the maximum thickness occurs closer to the
center of the disk. This can also be seen in Figs. 2.10 and 2.11. Also
shown in Figs. 2.9 - 2.11 are the supercritical regions for the different
flow rates when the disk is stationary. It can be seen that the film
thickness in the supercritical region is generally close to the case when
the rotational speed is 55 RPM. The exception is near the end of the
supercritical region where the film thickness increases, as shown in Pigs.
2.10 and 2.11. This phenomenon is due to the fact that the stationary film
1s not being acted upon by centrifugal forces, so the film thickness

continues to increase in this region because of the effect of friction.
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2.5.2 Flow Visualization .

-

A photographic study was performed to determine the basic phenomena
which occur when the disk vas'stationary and rotating. When the disk is
stationary, waves can be seen both on the subcritical and supercritical
regions. The waves on the subcritical region have larger amplitudes than
those in the supercritical region. At low flow rates, a toroidal "roller"
vas found at the hydraulic jump when the disk is stationary. At higher
flov rates, the roller flattened out until it could not be distinguished
from the increase in the film thickness at the hydraulic jump. Also for
high flow rates, the surface tension of the liquid at the free surface
creates a standing wave at the edge of the stationary disk. This standing
wave 1s also present at all flow rates when the disk is rotated at low
angular speeds. At higher spin rates, waves appear on the disk which flow

nearly radially across the disk on top of a thin substrate of fluid.

In Figs. (2.12 and 2.13), the disk was stationary, the flow rate was
set to 7.0 LPM and the shutter speed was 1/1000 éecond. Vith this shutter
speed, the waves on the free surface of the liquid film could be
. photographed.. In alliof_phe,phptogrgphs presented, the direction of the
flov is from right to left and the direction of rotation is clockwise. The
waves in the supercritical region are shown in Fig. 2.12. Near the collar
the amplitude of the waves is small, but close to the hydraulic jump the
amplitude of the waves becomes larger. The waves in the subcritical region
can be seen in Fig. 2.13. These waves have a much larger amplitude than
those in the supercritical region. This vas verified when the liquid film

height was measured with the capacitance sensor. Even though the actual
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height of the waves could not be measured, the standard deviations of the

signals from the mean film thickness were much larger in the subcritical

region than those in the supercritical region.

Figures (2.14, 2.15 and 2.17) show the behavior of the hydraulic jump
for low flow rates. These photographs were taken with a shutter speed of
1/60 second. Figure 2.14 shows the hydraulic jump at a flow rate of 3.0
LPM. The hydraulic jump occurs immediately after the liquid exits the gap
between the collar and the disk. The flow rate was increased to 4.0 LPN,
which is shown in Fig. 2.15. The hydraulic jump is pushed away from the
collar approximately 30 mm. The shape of the jump can be seen to be a
toroidal "roller". The motion of the roller is very chaotic in that its
width and height oscillate 1in a seemingly random fashion. At this flow
rate, however, the cross section of the roller is nearly circular. At
higher flow rates, it was found that the shape of the roller changes
significantly. A more detailed visual study was performed, and it was
found that at flov rates between 3.0 - 6.0 LPX, the roller had a nearly

circular cross section as shown in F1g 2.16a. For flov rates between 7.0
- 8.0 LPM, the cross section of the roller was oval in shape as shown in
- Fig. 2.16b. . For flow rates at and above 9.0 LPM, the shape of the roller
was no longer distinguishable from the gradual increase in the film height,
wvhich is presented in Fig. 2.16c. The surface of the film at the hydraulic
jump at this flow rate could clearly be seen to be falling down toward the
center of the disk in the direction opposite to the main direction of the
flow. Therefore, the roller had submerged such that it could not be seen
photographically, but its presence was unmistakable. This change in the

shape of the roller is thought to be due to the change in the balance
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Figure 2.14. Stationary disk, 3.0 LPM

Figure 2.15. Statiopary disk, 4.0 LPM
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Figure 2.16c. Roller for 9.0-15.0 LPM
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between the surface tension and the momentum of the fluid. At lower flow
rates, the velocity of the fluid within the roller and the surface velocity
of the liquid film do not have sufficient momentum to overcome the surface
tension which holds the circular shape of the roller. As the flow rate and
the surface velocity of the supercritical liquid film increases, the effect
of momentum of the liquid overcomes that of surface tension, which results

in the change in the shape of the roller.

Pigure 2.17 shows the film surface when the flow rate is 5.0 LPX. A
series of small concentric waves immediately upstream of the hydraulic jump
can be seen, which are illustrated in Fig. 2.16. These concentric waves

were present at flow rates between 4.0 - 15.0 LPN and had larger amplitudes

at higher flow rates.

Figures (2.18 - 2.24) present the rotating disk for a flow rate of 7.0
LPN and rotational speeds of 55, 100, 150, 200, 250, 300, and 350 RPN,
respectively.  Figure 2.18 shows the disk rotating with a speed of 55 RPN.
The waves on the free surfaée éppear io be similar to the waves found in
the subcritical region on the stationary disk with the same flow rate (see
Fig. 2.13). Measurements of the standard deviation from the mean film
thickness, however, showed that the amplitude of the waves were closer in
height to those in the supercritical region. Near the edge of the disk is a
~standing wave created by the surface tension of the fluid. In this case,
the rotational speed is slow enough that the fluid follows the edge of the
disk downward instead of flying off the disk horizontally. Therefore, the
radius of curvature of the free surface around the edge of the disk acts to

increase the film height immediately upstream from the edge of the disk.
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Figure 2.17. Stationary disk, 5.0 LPM

Figure 2.18. Rotating disk, 7.0 LPM, 55 RPM
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Two flow regimes were found to exist on .the rotating disk:
wavy- laminar and radial wave ﬁlow. The transition from the wavy-laminar
flow to the radial-wave flow has been visually examined for 7.0 and 13.0
LPM and is presented in Figs. (2.18 - 2.31). The wavy-laminar flow is seen
at lower rotatinal speeds and the radial-wave flow occurs at high
rotational speeds. The wavy- laminar flow is shown in Fig. 2.18 for 7.0 LPM
and 55 RPM. In this regime, no recurring wave patterns are distinguishable
except the end effects at the outer edge of the disk. The radial-wave
regime is shown in Pig. 2.30 for 13.0 LPN and 300 RPM. Several
well-defined radial waves can be seen which appear to flow across the disk
on top of a thin substrate and carry the bulk of the fluid off of the disk.
In Fig. 2.30, a radial vave is exiting the disk on the left-hand side in
the center. Immediately below this wave, very little fluid is leaving the

disk where the thin substrate is present. The transition between these two

regimes will now be discussed.

Vhen the rotational rate vas slowly changed from 55 RPN to 100 RPX for
7.0 LPM, the waves on the free surface began to form a pattern which could
be easily distinguished, as shown in Fig. 2.19. Parts of the free surface
broke. free from the wavy- laminar regime to form V-shaped waves that ran at
a diagonal angle between the radial and circumferential directions opposite
to the rotation of the disk. At the lower rotational speeds, these waves
vere present only at the outer edge of the disk. The film thickness at the
base of the ’V’ was greatest, and that at the top of the V was least. It
is felt that the effect of the centrifugal force eventually overcame that
of the surface tension, so that the liquid film began to run in rivulets

toward the edge of the disk. As the rotational speed increased, the width
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of the V-shaped waves decreased and the length increased until the waves
traversed the éadius of th disk as shown in Fig. 2.21. It can be seen in
Fig. 2.22 that the spacing between the radial waves increases with the
radius because of the increase in the flow area. For rotational speeds at
and above 200 RPY, the radial waves could be seen in almost every still

photograph, so the transition region for 7.0 LPM is 100-200 RPX.

Figures (2.25 - 2.31) present the surface waves for 13.0 LPX at
rotational speeds of 55, 100, 150, 200, 250, 300, and 350 RPN. Upon
examining these figures, the transition region was determined to be
approximately 150 - 200 RPY, which is higher than that of 7.0 LPX. It is
thought that at the higher flow rate, the transition is delayed because the

effect of centrifugal force must overcome the increased effect of the

radial momentum of the fluid.

Figures (2.18 and 2.25) compare two flow rates (i.e., 7.0 and 13.0
LPM, respectively) at the same rotational speed (i.e., 55 RPM). 1In Fig.
2.18, the width of the-standing vave at the edge is much larger than that
of Fig. 2.25, which has a higher flow rate. This shows that at higher flow

rates, the momentum of the flow overcomes the effect of surface tension.

2.6 CONCLUSIONS

The characteristics of a thin liquid film with a free surface on a
stationary and rotating disk have been examined experimentally. The film
thickness was measured for different flow rates and rotational speeds with

a non- contact capacitance technique. Also, the nature of the waves on the
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Figure 2.25. otating disk, 13.0 LPM, 55 RPM

Figure 2.26. Rotating disk, 13.0 LPM, 100 RPM
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Figure 2.27. Rotating disk, 13.0 LPM, 150 RPM

Figure 2.28. Rotating disk, 13.0 LPM, 200 RPM
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free surface was determined photographically. VWhen the horizontal disk was
stationary, the éhin film experienced a hydraulic jump, in which the
velocity decreases and the thickness increases at a certain radial
distance. In the region upstream of the jump, the film thickness was
governed by the inertial and frictional forces on the fluid, as wvell as the
radial spreading of the fluid. Downstream from the jump, the film
thickness vas mainly determined by the radius of curvature of the liquid at
the outer edge of the disk. The liquid film thickness on the rotating disk
vas affected by the inertial and frictional forces on the fluid near the
center of the disk, and by the centrifugal force near the outer edge of the
disk. The flow visualization study revealed the presence of a "roller" at
the hydraulic jump on the stationary disk, whose shape changed with the
flow rate. Also, the transition between wavy-laminar flow to radial-wave
flow was observed on the rotating disk as the rotational speed was

increased. The range of transition shifted to higher rotational speeds as

the flow rate increased.



Section III

-

TVU-ﬁIlENSIUNAL COMPUTATION OF THE FREE SURFACE FLOV
OF A THIN LIQUID FILN USING "PRESSURE OPTINIZATION METHOD"

3.1 SUNNARY

The results of numerical computations are presented for the free
surface flow of a thin liquid film in the presence or absence of a
gravitational body force. Three different flow systems were studied: (a)
a falling film down a vertical wall, (b) plane and radial film flows under
zero gravity and (c) plane and radial film flows along a horizontal plate
in the presence of gravity. In ihe case of film flow along a horizontal
plate where gravity acts across the thickness of the film, the Froude
number, which characterizes the flow regime (i.e., supercritical or
subcritical), is found to be the most dominant parameter. The
transformation of the flow from supercritical to subcritical is associated
with a hydraulic jump. The distributions of the film height, film velocity

and friction coefficient are presented.
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3.2 INTRODUCTION .

The flow of ; thin liquid fi}m is encountered in many engineering
devices. A thin film is quite commonly found during evaporation or
‘condensation on a solid surface in a compact heat exchanger or cooling
tover, spin coating in metal industries, and impingement cooling of a solid
wall with a liquid jet. Besides practical applications, the fluid
mechanics of thin film flows is important from a theoretical point of view
since both viscosity and free-surface effects are significant in these
flows. Moreover, the understanding of such flows under reduced or zero
gravity is essential for the proper design of heat exchangers and heat

pumps for space applications, which was the primary motivation for the

present study.

The falling of a thin liquid film along a plane vertical wall has been
studied by many investigators since the turn of this century. For steady
fully-developed laminar flow, a theoretical solution can be derived from a
simple balance between the gravitational body force and the shear force at
the solid wall (Bird et al. (1960)). The film height remains constant and
the velocity profile across the film becomes parabolic in the fully
developed region. The results of developing flow when a film is introduced
at its equilibrium height is presented in the review aritcle by Faghri and
Payvar (1979). This review also included the experimental studies on
laminar flow with constant thickness. A film falling under the influence
of gravity ceases to be laminar and constant in thickness when the flow
rate is high. Vaves tend to appear on the surface and the flow becomes
turbulent as the flow rate is increased. A number of theoretical as well

as experimental studies have been performed to understand the wavy-laminar
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and turbulent flows (see, for example, Seban and Faghri (1976, 1978) and

Hirshburg and Florschuetz (1982)).

A somevwhat less studied problem is the spread of a liquid film over a
plate. Vatson (1964) presented results of analytical and experimental
studies of the radial spread of a liquid jet impinging on a horizontal
plane for laminar and turbulent flows. By using the boundary layer
approximations for the governing equations, analytical solutions using a
similarity transformation along with the Pohlhausen integral method were
derived. The analysis covered the regions where the boundary layer
thickness is less than the film height and where the film is totally
engulfed by the boundary layer. The effects of the gravitational pressure
gradient was discussed. The possibility of a hydraulic jump in such a flow
was also anticipated. However, the analysis was applicable only to the
supercritical flow before the jump. An equation was also presented to
predict the jump height for any given location of the jump. The agreement

between the experimental data and the analysis was satisfactory.

Another interesting problem of thin film research is the spreading of
the film under the action of centrifugal force as seen in a rotating
system. An approximate analytical solution for laminar flow on a rotating
disk was developed by Rauscher et al. (1973). An asymptotic expansion
technique was used where the radial spread of the fluid was perturbed to
determine the effects of convection, Coriolis acceleration, radial
diffusion, surface curvature and surface tension. These higher order

effects were discussed on a physical basis.
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In all of the previous studies congerninghthin liquid films, the
investigators have tried to develop analytical models or have taken
experimental data. Some of these models are quite approximate in nature
and do not bring out the finer details of the flow field. Moreover, in all
of the previous numerical studies (Faghri and Payvar (1979)) concerning the
laminar falling film, a constant thickness was wused in the calculation
domain and no degree of freedom was permitted for the variation of free
surface along the flow. A general numerical finite-difference solution of
a thin film flow accounting for the variation of free surface height is not
available at the present time. These flows are difficult to solve by the
finite-difference method since the geometry of the free surface 1is not
known ahead of time, and the surface profile cannot be fitted in a regular
Cartesian or cylindrical coordinate system. Moreover, none of the studies
mentioned above has considered the flow under reduced or zero gravity,
which is expected to be different from the flow under normal gravity. A

proper understanding of such flows is essential in the design of space

cooling systems.

The present study is undertaken to develop a general numerical
solution procedure for free surface thin film flows which can be applicable
to both plane and radial systems, and to both normal and zero gravity

environments. The results highlight the effects of gravity for different

configurations of the flow.

3.3 PROBLEN FORNULATION

The equations governing the conservation of mass and momentum in a

thin film of fluid which is Newtonian with constant properties are given by
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7-V=0 . : (3.1)

-
- -+

2
p g% =- Vp+ 4V V + pg (3.2)

These governing equations have to be supplemented with appropriate

boundary conditions. At the solid wall, the no-slip condition exists,
—
therefore, V = 0. 0On the free surface, the shear stress vanishes which

implies 6;/0n = 0, where n is the coordinate normal to the free surface.
Moreover, in the absence of any significant surface tension, the static
pressure on the free surface must equal the ambient pressure. By setting p
equal to the difference between the actual and ambient pressures, then p =
0 on the free surface since pressure is a scalar quantity. Boundary
conditions must also be assigned in the direction of the flow at two
locations: the inlet and exit to the control volume or computational
domain. The appropriate conditions were determined by analyzing the
characteristic behavior of the flow, which is presented in a later section.
These depend on whether the flow is supercritical, subcritical, or mixed.

For a supercritical flow, which includes most of the cases considered here,

—+

' - -
h =h, and V= Y., at the inlet and dV/dn = 0 at the exit, where n is the

coordinate normal to the exit plane. For subcritical flow, h = hout at the
exit was prescribed instead of the inlet height. Moreover, the pressure
was prescribed at the exit boundary. The boundary-fitted coordinate system
used here is shown in Fig. 3.1 and the boundary conditions in component

form are listed in Table 3.1 for plane and radial flows. The coordinate

system 1s dicussed in detail in a later section of the paper.
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Fig. 3.1 The coordinate system on a grid cell
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Table 3.1: Boundary Conditions for Plane Flow and Radial Flow

~

at y = 0: "v=w=0
-+ . -
at y = §: r-n=0, 1-t=0
at z = 0 or I v =0, { W = vin’ for uniform entrance
2 .
v=1.5V, 2(%) - (%) ], for parabolic
entrance

at z=Lorr = 0, for cases 1 and 2

out’

r——
-l e
1} [

pg (6 - y), for case 3
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The flow configurations considered in.the present investigation are
shown in Fig. 3.5. They can be broadly classified into three groups
according to the presence and orientation of the gravitational body force:
(1) Palling film along a vertical wall
(2) Film flow under zero gravity
(3) Film flow along a horizontal plate in the presence of gravity.

The three possible orientations with respect to gravity will be denoted by
1, 2, and 3. Moreover, P and R will denote plane and radial flows and A, B
and C will denote different combination of flow parameters. The parameters

used for this study are listed in Table 3.2.

The first case is a classical problem where the major driving
mechanism is the gravitational body force. This problem was used to check
the accuracy of the present numerical methodology. The effects of
introducing the film at a height other than the equilibrium height for a

given flow rate will also be investigated for this case.

For film flow under zero grévity, two‘problems will be considered:
(2P) Plane film flow under zero gravity

(2R) Radial film flow under zero gravity

In the absence of any gravitational body force, the orientation of the
plate becomes immaterial. The flow remains the same whether the plate is
vertical, horizontal, or inclined. In this case the flow is driven by
inertia and viscous forces. In the radially spreading flow, the area
available for the film increases downstream and acts as an added mechanism

for the reduction of the film velocity.
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Table 3.2: Flow Conditions and Free Surface Specifications

Case 1PA: b5y = 6gq» (= 0.000595 m)
Re = 12.5, g/gs =1, L=0.03m
Free surface: 4 = 1

Case 1PB: b;n = 126445 bgq = 0.000595 m)
Re = 12.5, g/gs =1, L =0.03m

A= (1+ 463", for ¢ < ¢

Free surface: {
A

1, for {2 61

Case 1PC: b = 0-86¢y, (8gq = 0.000595 m)
Re = 12.5, g/g; =1, L =0.03nm

A= (1448 for £ < ¢
1, fOI‘{?_fl

Free surface: {
A

i

Case 2P: 5in = 0.000595 m
Re = 12.5, g/g, = 0, L = 0.03m

Free surface: A = (1 + 4¢)%"

Case 2RA: §,, =0.005m r; =0.0508m r
Re, = 404, g/gg = 0

Free surface: & = (1 + Aé)an

out = 0.1953 m

Case 2RB 6in = 0.000508 m, Tin = 0.0508 m, Tout = 0.1m
Re. = 8.5, g/gs =0

Free surface: A = (1+ A¢)3"

Continued on next page
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Case 3P: Re = 88.75, g/gs =1, L =0.1445 m

Fr. = 5.661, for case 3PA
in = | 8.582, for case 3PB
Frout = 1.0

Free surface:
A 1+ Af)an, supercritical

- (
A=C[2- (D+BE™ ], subcritical (¢ ¢ 1)

Case 3R: Re, = 50.5, g/gS =1, r;; =0.0508 my r . =0.1953 m
Fr. = [ 7-442, for case 3R4
in © | 10.96, for case 3RB
Frout = 1.0

Free surface:
b= (1 + A¢)®", supercritical

A=C[2- (D+ B, subcritical (¢ # 1)
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In the third group, we will again consider two problems according to
the flov geometry under consideration:
(3P) Plane film flow along a horizontal plate in the presence of gravity

(3R) Radial film flow along a horizontal plate in the presence of gravity

In the case of horizontal thin film flow where the gravitational body
force acts across the thickness of the film, different flow regimes
(i.e., supercritical, subcritical, or both) may be present according to the
local film velocity and height. The transition of the flow from
supercritical to subcritical can,6 take place through a hydraulic jump.
Since a sudden transition of the flow takes place across a jump, special
analytical and computational tools are required to calculate the flow

around this singular point.

3.4 NUMERICAL SOLUTION PROCEDURE

The complete governing transport equations (3.1 and 3.2) along with
the appropriate bpundgry conditions (Table 3.1) were solved numerically
using-a finite;difference scheme. Since the free surface geometry cannot
be handled very well with a regular rectangular or cylindrical coordinate
system, a boundary-fitted curvilinear coordinate system had to be used. In

this system, the free surface of the film was used as one of the boundaries

of the control volume.

A curvilinear system can be either orthogonal or non-orthogonal
depending on whether the faces of the control cells are orthogonal to each
other or not. The orthogonal system has the advantage of simplicity

compared to the non-orthogonal system. In either system, the vectorial
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form of the governing equations [i.e., eqns. (3.1) and (3.2)] can be

written in terms of components and can be discretized to determine the
finite-difference equations. In most of the computations presented, the

coordinate system was non-orthogonal.

Vithin the range of the general non-orthogonal coordinate system there
exist several options in formulating the equations. These options arise
from the freedom available in the choice of velocity components and their
direction with reference to the coordinates. Thus, velocity and force
vectors can be resolved either into their Cartesian, covariant or
contravariant components. Moreover, the problem can be solved in a
physical domain or transformed into a domain where the grid cells are
rectangular and other physical quantities are non-dimensional or reduced in
dimension. Although all these options are obviously equivalent to each
other from the physical point of view, they are substantially different as
far as numerical treatment is concerned, each presenting its own problems.
In the present study, the problem was solved in the physical domain vhere
covariant velocity componenté were used. These are components parallel to

the cell faces.

The grid system used can be considered as a distorted version of the
usual orthogonal Cartesian grid system in which grid lines and control
cells are stretched, bent and twisted in an arbitrary manner, subject to
the cells refaining their topologically Cartesian character. This means
that grid cells always had four sides and four corners in the

two-dimensional domain considered here.
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As shown in Fig. 3.1, the local coordinates are defined along lines
joining adjacent kell centers. Ipe z-axis was taken in the streamline
direction and y-axis in the direction across the film. The resolutes of
the velocity vectors in the y and z directions are v and w, respectively,

and can be defined as

ko]

H

<1
loee

- -
Here j and k are unit vectors in the direction of the coordinate axes. In

general, the resolutes are not the same as the velocity components in these

directions, but can be related to them by geometrical factors.

The finite-difference equations were derived by the application of the
principle of conservation of mass and momentum to the grid cells. The
transport processes for each cell are convection and diffusion. Noreover,
there may be a mohentuﬁ or mass source within the cell. The mass flux
across a cell boundary was computed exactly from the scalar product of the
velocity vector and the vector representing the area of the cell face.
Note that thié -éan be -written oﬁt in terms of velocity resolutes and
geometrical factors including angles between cell faces. In the
calculation of convection across a cell face, special attention was given
to the Changeiof‘the orientation of the coordinate axes from cell to cell
and the curvature of a cell face. These resulted in extra terms in the
calculation of convection. However, the representation of convection was

exact and did not involve any approximation due to the non-orthogonality of
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the grids. .

The calculation of diffusion is somevhat more complicated than
convection. The diffusion flux was calculated assuming the coordinate
system to be locally orthogonal. This obviously neglects cell curvature
and non-orthogonal orientation and may incorporate a substantial amount of
error vwhere the process is primarily diffusive. However, in the thin film
calculation this approximation should not introduce severe inaccuracies,

particularly when the film enters the control volume with a reasonably high

velocity.

The relative importance of convection and diffusion at each cell was
determined from the magnitude of the local Peclet number. A hybrid
difference  scheme demonstrated by Patankar (1980) was used. The
calculation of the momentum source due to the pressure gradient and that
due to the gravitational body force could be accomplished without any

approximation for non-orthogonality.

The grid generation was achieved in two steps. First, the grid cells
vere formed by algebraic interpolation between the boundary points. This
provided an approximately equal volume for each control cell. The
boundaries for the interior cells were then smoothed to make the cell faces
more orthogonal to each other. This was achieved by solving the Laplace
equation for grid geometry. This latter operation resulted in a better
representation of diffusion in the flow field and more accurate
computations. The details of the formulation in a body-fitted coordinate

system and the generation of grid cells are described in the work by
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Spalding et al. (1986).

The number of grids in the 2z-y plane was determined from a series of
computations with different grid sizes. For radial flow, it was found that
the free surface profile along with other computed quantities do not change
any further if the computational mesh is refined beyond 50 x 25 grids in
the z-y direction. Computations with 50 x 25 and those with 55 x 27 grids
yielded identical results. For plane flow 40 x 20 grids in the z-y plane
was found to be adequate, which precisely predicted the friction
coefficient and velocity profile in a fully developed falling film flow.
Therefore, all computations were carried out using 40 x 20 grids for plane

flow and 50 x 25 grids for radial flow.

The flow field was solved by using the SIMNPLEST algorithm as discussed
by Spalding (1980). One special feature of this algorithm is that in the
discretized form of the momentum equation, the convection terms are lumped
together with the source term. This results in a faster convergence for
some flow conditions. The algorithm works in an iterative manner where the
continuity equation is transformed and used as a pressure correction
equation. The computation starts by guessing a pressure field. This is
used to determine velocity components from their corresponding momentum
equations. The modified continuity equation is then used to determine the
amount of pressure correction. The guessed pressure, the amount of
pressure correction and the éolution ’corresponding to the momentum
equations are then assembled together to give the flow rate and pressure
field for that step. The new pressure serves as a guess for the next step.

The solution proceeds until the normalized residual for each equation was
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approximately 10'6. The above finite-difference formulation and solution

procedure is incorporated in the computer program PHOENICS that was used in

the present study.

In the free surface flow discussed here, both the zero-shear condition
and the p = 0 condition at the free surface need to be satisfied. These
tvo conditions cannot be simultaneously given at a boundary with the
existing program. On the other hand, the free surface geometry, which is
unknown in the problem has to be given before solving the flow field by a
finite-difference method. To avgid this difficulty, an iteration scheme

has been adapted as described below.

(1) Guess a free surface height distribution. One may use the
one-dimensional solution for a good start.

(2) Solve the flow field completely for that distribution using the
zero- shear condition on the free surface boundary.

(c) Find the pressure distribution on the free surface and calculate
ité deviation froﬁ an ideal-zéro-breséure free surface. The
measure used here is the normalized RMS (root-mean-square) error

referenced to the initial total head. It is defined as

Normalized RMS Error = D

where Py is the free surface pressure at the kth node, and n 1is

the number of nodes adjacent to the free surface.

101



(d) Calculate and reduce the RMS error on the free surface by
successive alteration of the surface height distribution.
(e) The results with the minimum error give the required final

solution.

The optimization technique used here is known as the exhaustive search
method. In this method, a general form of the equation representing the
free surface 1is assumed. The equation contains a number of arbitrary
parameters depending on the desired degrees of freedom. To start the
process, the parameters are given values either from experience (i.e., the
one-dimensional solution) or just guessed. Only one parameter is then
changed while the other are held constant and the trend of the RMS error is
observed. That parameter is changed continuously in successive steps until
a minimum RMS error is obtained. The parameter is then kept at its optimum
value while the other parameters are changed one by one following the same
procedure. Once the first round of optimization is complete, the first
parameter is changed again in either direction to see whether the error
increases or decreaseé. The process is continued with the other parameters
until an absolute minimum for a combination of parameters is obtained. The
accuracy of this process depends somewhat on the assumption of the form of
free surface. In the results presented here, hyperbolas with two or more
degrees of freedom (Table 3.2) were used to represent the computational

domain.

The numerical algorithm had to be modified slightly when a jump was
present in the flow field. This happened in the case of horizontal film

flow in the presence of gravity. Under some flow conditions, both
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supercritical and subcritical flows are presept, separated by a hydraulic
jump. Vhen a jump was present, the two regimes of flow ( i.e.,
supercritical and subcritical) had to be computed separately and the

conditions were matched at the jump interface. It involved the following

operations.

(a) Compute the supercritical film height by imposing the inlet film
height and velocity and by optimizing the free surface profile to give
the minimum RMS error in the pressure.

(b) Calculate the jump height from the supercritical film height using the

equation
]
2 _ 1 2
EI =5 [ Jl + 9.6 Fr1 -1 ] (3.3)

where subscript ’1’ denotes the supercritical condition before the
jump and ’2° denotes the condition following the jump. This
relationship can be derived from the momentum balance at the jump
while the velocity profile before and after the jump are assumed to be
parabolic in nature.

(c) Compute the subcritical film height by imposing the flow rate and exit
film height corresponding to Fr = 1 and optimizing the free surface
profile to give the minimum RMS error for the pressure.

(d) The supercritical and subcritical flows are calculated for the same
flow rate, but for supercritical flow the inlet Froude number is
fixed, whereas for subcritical flow the exit Froude number is fixed.

(e) The intersection of the jump height and the subcritical film height
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determines the location of the jump. The film height before the jump
is given by the supercritical height whereas after the jump the film

height is given by the subcritical height.

In order to increase the computational accuracy for both subcritical
and supercritical flows, the flow involving a hydraulic jump was always
assumed to have a parabolic velocity profile at the inlet. Moreover, the
flow was well-established by evolving the flow with a few extra nodes at

the upstream side of the computational domain.

3.5 RESULTS ARD DISCUSSION
3.5.1 Falling Film

The flow of a plane film along a vertical wall under the influence of

gravity is a classical fluid mechanics problem where an analytical solution
1s available for fully-developed laminar flow. Inm the fully-developed
region, the film height remains constant and the velocity profile has a
parabolic appearance. Numerical computations using the present methodology
vere performed> fdr a film which has already reached the fully-developed
condition. A parabolic velocity profile with the same shape as given by
the analytical solution was used for the incoming fluid. The Reynolds
number for the film was Re = 12.5. It was found that for the entire
domain, the velocity profile across the film remains about the same and the
friction coefficient was equal to that of the analytical solution. 1In the
present investigaﬁion, the friction coefficient 1is defined in terms of
local average velocity of the fluid across the film in contrast to the
inlet velocity. This definition is applicable for both plane and radial

flows. For plane flow with constant thickness, ¥V is constant because of
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continuity.

The distribution of pressure on the free surface was also computed and
the normalized RMS error was determined to be 0.011. This non-zero value
for the error may be attributed to the inmaccuracy associated with the
representation of the flow field by finite-difference equations. This
error can be further reduced by more grid points and more degrees of

freedom in the free surface equation.

The developing flow of a falling film when introduced at a height
equal to, above, or below the equilibrium height was also investigated.
The flow conditions are summarized in Table 3.2 (cases 1P) and the results
are shown in Table 3.3 and Figs. 3.3 and 3.4. VWhen the film enters the
control volume at the equilibrium height, the height remains the same and
the development of the velocity profile from uniform to parabolic occurs as
the flow moves downstream. VWhen the film enters with a height other than
the equilibrium height, a gradual adjustment of the height takes place
until the flow reaches the equilibrium height. The adjustment of the free
surface and the development of the velocity profile occur simultaneously in
this flow. To model the free surface, a height distribution of the form
given in Table 3.2 (cases 1PB and 1PC) was assumed. The first part of this
distribution (§<{1) provides the variation of the free surface height in
the developing flow region and the second part (5251) gives the height

after the adjustment is completed. The downstream location where the free

surface adjustment is complete is (.

For the computation with 5in = 6fd’ the normalized RMS error on the
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Table 3.3: Summarv of Computed Optimum Profiles and
Normalized RMS Error in Pressure

Normalized
RMS Error in
Problem -~ Optimum Profile Pressure
Case 1PA (Parabolic Inlet) uniform 0.011
Case 1PA (Uniform Inlet) uniform 0.073
Case 1PB A= T7.5 0.024
an = 0.2
{1 = 0.2
Case 1PC A = 3000 0.026
an = 0.0445
¢ = 0.05
Case 2P A= 10 0.054
an = 0.93
Case 2RA 4 = 1.43 0.039
an = -0.64
Case 2RB A= 27.3 0.091
an = 0.72
Case 3PA A= 1.47 0.014
an = 1.52
C = 8.42
D= 1.04
B= 0.29
bn = 1.5
Case 3PB A= 1.47 0.025
an = 1.83
C=11.11
D = 1.04
B = 0.29
bn 1.5
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free surface condition is 0.073. The uniform entrance condition provides a
higher RS erro; than the pgfabolic entrance since a developing flow
regionis present where the pressure has to conform with the flow
development. An error of this order may be acceptable for a free surface
computation since no variation of height is expected to take place when a
film is introduced at the equilibrium height. In the present
investigation, the normalized RMS error corresponding to the optimum free
surface profile did not exceed a limit of 0.1. The distance required for
flow development was found to be about five times the film thickness in
this case. A flow is defined to be fully-developed when the friction
coefficient is within 2 percent of the final equilibrium value. This
definition is similar to that given by Kays and Crawford (1980) for

developing flow in closed conduits.

As seen in Fig. 3.3, the adjustment of the film height takes places
for a length of approximately 0.2 L, which in terms of equilibrium height
came out to be 106fdbyhen a film is introduced at a height 20 percent more
than the equilibrium height. In this situation, the velocity profile also
becomes fully-developed at the same location. A film introduced at a
height 20 percent lower than the equilibrium is found to require a shorter

distance for the adjustment of the free surface and the velocity profile.

The variation of the friction coefficient along the length of the film
is shown in Fig. 3.4. The distributions for 6. = é¢, and b;, = 0.8, are
very close to each other, but for 5in = 1.26fd the variation 1is
significantly different. In the last case, the friction coefficient first

decreases to a value lower than that for the equilibrium condition and then
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rises up to the equilibrium value. This is_due to two counter-acting
phenomena that a}fect the film in the developing flow region in this case.
The wall friction propagates outward as the boundary layer develops
beginning from the entrance point which tends to reduce the velocity of the
fluid. The thickness of the film, however, decreases and tends to increase
the fluid velocity due to the area available for the flow. Since the first
effect starts from the wall, it is more dominant in the earlier part of the
flow development and then the second effect takes over in the region
downstream. It can also be mentioned that when the film is introduced
below the equilibrium height, the increase in the film height and the
propagation of the shear stress tend to reduce the film velocity, so the
behavior is not analogous to the case when the film is introduced above the
equilibrium height. In all situations, a plane falling film eventually
attains a fully-developed flow. This was confirmed by comparison of the
velocity profile in a 1location near the exit. The variation of the

velocity and the friction coefficient were found to be identical in all

situations.

3.5.2 Film Flow Under Zero Gravity

In the absence of gravity, the orientation of the plate becomes
immaterial and an identical flow condition is achieved if the plate is
horizontal, vertical, or inclined. A situation is considered herein where
the film is introduced at a height equal to the equilibrium fully-developed
flow in a falling film system as discussed in the previous section. 1In the
absence of gravity, the flow is acted on only by viscous and inertial
forces and the film height is expected to increase downstream. To model

the free surface, a profile of the form given in Table 3.2 (case 2P) is
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assumed. The flow conditions are also listed in the same table. The

results are shown in Table 3.3 and Figs. (3.5-3.7).

Figure 3.5 shows the variation of the dimensionless film height with
distance, which increases monotonically. The figure also shows the
analytical solution derived in a previous section. The analytical solution
requires the specification of a friction coefficient. In the present
investigation, the friction coefficient was taken from the numerical
solution instead of assuming it to be constant throughout the region. The
comparison between the analytical and numerical solutions appears to be

good in most regions of the flow.

The variation of the w-component of the velocity at three different
locations is shown in Fig. 3.6. In contrast to the falling film, the
velocity changes as the flow moves downstream and does not attain a
fully-developed situation. The profile, however, becomes approximately
pargbolic in nature downstream from the entrance. A test of the velocity
profile with a true parabdla shoved that the maximum deviation is less than
10 percent. The shear stress exerted by the solid wall and the
corresponding friction coefficient are plotted in Fig. 3.7. It can be
noticed that the shear stress decreases continuously as the flow moves
downstream, whereas the friction coefficient has a minimum at an
intermediate location and then increases. The largest variations of the
shear stress occur close to the entrance due to the development of the
velocity from a uniform to a parabolic profile. After the velocity profile
is fully developed 1in shape, the slight reduction in the shear stress is

due to the deceleration of the flow, which 1is small compared to the
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reduction of the average velocity in regions  away from the entrance. This

results in an increase in the friction coefficient.

The system where a fluid is introduced at the center of a circular
horizontal plate and spreads uniformly in all radial directions was also
studied. Two different inlet Reynolds numbers were chosen. The {flow
parameters corresponding to these cases are shown in Table 3.2 (cases 2RA
and 2BB). The surface profile and corresponding normalized RMS error for

the surface pressure are listed in Table 3.3.

Figure 3.8 shows the variation of the film height with radial
distance. Case 2RA corresponds to a higher Reynolds number than that of
Case 2RB. It appears that the inlet Reynolds number is a very strong
parameter in determining the behavior of the film as it spreads radially
under zero gravity. At a high Reynolds number, the film decreases in
height monotonically because the inertial forces are greater than the
frictional resistance exerted by the solid wall. Vhen the Reynolds number
is small, the film enters the control volume with a smaller amount of
inertia and is easily overpowered by the frictional resistance. The strong
resistance to the flow causes a rather rapid increase in the film height as
it flows downstream. The figure also shows the film height distribution
predicted by the one-dimensional analysis for case 2RA. The analytical
prediction for this case is found to be comparable with the two-dimensional

numerical solution.

The wvariation of the velocity across the film thickness is shown in

Fig. 3.9 for two different locations. In both cases, the profile is almost
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parabolic (deviation within 2 percent) but its. magnitude decreases
downstream due io the increase in area available for the flow. The
friction coefficients for these two cases are plotted in Fig. 3.10. In
case 2RA, the friction coefficient is smaller in magnitude than that of
case 2RB because the friction coefficient is a function of the wall shear
stress and the local velocity. Case 2RA, which corresponds to a higher
fluid velocity, is expected to encounter more resistance from the wall.
This is precisely the situation as seen in the computed values of the wall
shear stress. However, the magnitude of the velocity 1is a stronger
parameter in the friction coefficient and causés the coefficient to be
lower in case 2RA. In the figure it can be also noticed that in case 2RB,
which corresponds to a smaller flow rate, the friction coefficient starts
increasing soon after the entrance, attains a maximum value at an
intermediate location and then decreases further downstream. In contrast
to case 2BA the velocity profile at the inlet was assumed to be parabolic
in nature. Therefore, a rapid decrease of friction coefficient near the
entrance, which is characteristic of a developing flow, is not found here.
The decrease of the friction coefficient downstream indicates that the
shear stress also decreases very rapidly in that region. This suggests the

possibility of a zero-shear condition further downstreanm.

3.5.3 Horizontal Film Flow in the Presence of Gravity

The flow of a plane film and a radially spreading film were also
investigated for a horizontal orientation of the plate where the gravity
acts across the thickness of the film instead of in the direction of the
main flow. The flow conditions used here are listed in Table 3.2 (cases 3)

and the corresponding free surface geometry is described in Table 3.3.



,3_>E@ 049Z JopUN MOJ} [DIPDJ O} JUSIDIS00 Lo QL' Dl

3 “JONVLSIA TVIAVY SSIINOISNINWIA
80 90 ¥'0
| | |

¢0
_

g 9sb)

S

V¢ 8sb)

|
o

|
iQ)
-

o I NTIDI4430D NOILOIM S

|
e}
O
o

O

120



Figures 3.11 and 3.12 present the computational results.

In the case of horizontal flow, two different flow regimes are
encountered. The flowv is subcritical or supercritical depending on the
Froude number. Both subcritical and supercritical flows move toward a
critical condition. Vhen the flow enters the control volume as
subcritical, it remains subcritical in the entire domain since a transition
from subcritical to supercritical is not possible. However, if the flow
enters the control volume as supercritical, it may remain supercritical or
transform into a subcritical flow depending on the amount of inertial,
gravitational, and viscous forces it encounters during the flow. Noreover,
if a transition is present it must happen as a jump where the height before
and after the jump can be related by the jump condition (eqn. 3.3). In the
present investigation, the supercritical and subcritical branches of the
flow were computed separately and the location of the jump was determined
via the jump condition. In the computation of supercritical flow, the
inlet height and Froude number were appropriately prescribed, whereas for

subcritical flow the outlet condition was prescribed.

In Fig. 3.11, it can be noticed that the jump moves downstream with an
increase in the inlet Froude number. VWhen the inlet Froude number is high,
the flow can maintain its supercritical status for a longer distance.
Figure 3.12 shows the subcritical and supercritical solutions and the
corresponding jump height distribution for the two plane flow cases
considered here. VWhen the inlet Froude number 1is increased, the inlet
height decreases 1if the flow rate 1s held constant. This causes the

supercritical height of the film to decrease and the jump height to
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increase. Vhen the Froude number is gradually increased at the inlet, a
condition 1is reached when the jump height curve goes above the subcritical
curve and no intersection of the two curves is found in the computational
domain. At that situation, no jump is possible in the region under
consideration and the flow remains supercritical over the entire plate.
Similarly, when the Froude number is gradually decreased at the inlet, the
jump height curve goes below the subcritical curve. In this situation, no

supercritical flow can be sustained and the jump occurs at the entrance.

Comparing the results of plane flow and radial flow, it can be seen
that the propagation of the jump location downstream with an increase in
the Froude number is greater for plane flow than radial flow. In the case
of radial flow, the area increases downstream and causes the flow to slow
down. This results in more rapid reduction of the Froude number of the
flow. Therefore, in a radial system a jump is likely to be present for a

larger range of inlet Froude numbers.

3.6 CONCLUSIONS

A numerical solution procedure for the computation of plane or radial
free surface thin film flows in a normal or zero gravity environment has
been developed. An analytical solution was also derived for a
one-dimensional approximation of the flow. A reasonable agreement between
the numerical and analytical solutions was obtained for most flow
configurations considered here. Three different flow systems were studied:
(a) plane falling film, (b) plane and radial flow under zero gravity and

(¢c) plane and radial flow on a horizontal plate in the presence of gravity.
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A plane falling film, whether introduced at its equilibrium height or
at a height abbve or below phe equilibrium, eventually attains the
fully-developed condition. In the fully developed region, the numerical
velocity profile, which is parabolic, matched exactly with the analytical
solution. An estimate on the error bound of the free surface pressure was
developed from the calculation of the developing flow of the falling film
and it was concluded that a normalized RMS error of less than 0.1 may be
acceptable. The length of the developing region was found to be small.
Both the free surface height and velocity profile appeared to arrive at the
equilibrium condition within 10 times the equilibrium film thickness. The
length was found to be relatively larger when the film begins with a height

above the equilibrium height.

For a plane flow under zero gravity, it was found that the film
thickness monotonically increases as the flow moves downstream. The
velocity profile 1is parabolic except for regions very close to the
entrance. The shear stress at the wall decreases as the flow moves
downstream. The friction cbeffiéient was Computed in terms of the local
average velocity and was found to increase after coming to a minimum at an

intermediate location on the plate.

For radial flow under zero gravity, it was found that at a higher
Reynolds number the film decreases monotonically in thickness as it spreads
downstream. At a smaller Reynolds number, there is a relatively rapid rise

in height and the flow develops a parabolic velocity profile as 1t moves

downstream.
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For both plane flow and radial flow on a horizontal plate in the
présence of gravity, two differeqt flow regimes (i.e., supercritical and
subcritical) are found to be present. The transition of the flow from
supercritical to subcritical is accompanied by a hydraulic jump. The

location of the jump moves downstream with an increase in the inlet Froude

number.
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Section IY

COMPUTATION OF HEAT TRANSFER IN TV0- DINERSIONAL THIN FILN FLOV

4.1 SUNNARY

The numerically computed flow field and heat transfer coefficient are
presented for the flow of a thin liquid film in the presence or absence of
a gravitational body force. The flow systems studied here include (1) a
film falling down a vertical wall, (2) plane and radial film flow at zero
gravity and (3) plane and radial film flow along a horizontal plate in the
presence of gravity. The heating conditions include isothermal and
uniformly heated surfaces. The transport conditions considered at the free
surface are an adiabatic condition when there is no heat loss from the free
surface and an evaporative free surface maintained at its saturation
temperature. The height of the free surface, flow field and heat transfer
_coefficient were found to ‘bg strongly affected by the magnitude and
direction of the gravitationél body force. They were also found to depend
on the Reynolds number and Froude number of the incoming fluid. The flow
conditions changed continuously downstream except for the falling film,
where a fully-developed condition was established at some downstream
distance. In the case of horizontal flow in the presence of gravity, a

hydraulic jump was found to be present under some flow conditions.
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4.2 INTRODUCTION

-

The heating.and evaporation of a thin liquid film are found in many
engineering processes. The desalination of sea water, the distillation of
petroleum products and evaporation in a cooling tower are examples. The
use of evaporative cooling is also becoming common in computer and space
technology because of the high heat rejection requirement per unit surface
area. An understanding of the flow and heat transfer in a thin film for
different magnitudes and orientations of the gravitational body force is
also essential for an appropriate design of the absorber unit of a heat

pump absorption system in earth and space, which vas the motivation for the

present study.

The flow and heat transfer in a falling thin liquid film along a plane
vertical wall has been studied by many investigators since the turn of this
century. For steady fully-developed laminar flow, a theoretical solution
can be derived from a simple balance of momentum and energy (Bird et al.
(1960) and Edwards et al. (1979)). The film height remains constant and
the velocity} profiie acrossk the film becomes parabolic in the fully

developed region. The friction and heat transfer coefficients become

constant in this region.

The analysis of developing flow when a film is introduced at its
equilibrium height is also available in the literature. Faghri and Payvar
(1979) presented numerical results for laminar flow of a thin liquid film
down a vertical wall. Both uniformly heated and isothermal surface
conditions were considered. The effects of evaporation and gas absorption

on the free surface were also considered in addition to the simple case of
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heating, where the free surface can be considered to be adiabatic. Their

results compared‘reasonably well with the available experimental data.

A film falling under the influence of gravity ceases to be laminar and
constant in thickness when the flow rate is high (Re > 50). Vaves tend to
appear on the surface and the flow becomes turbulent as the flow rate is
increased. A number of theoretical as well as experimental studies have
been performed to understand the flow in wavy-laminar and turbulent
regions. Seban and Faghri (1978) reviewed the experimental data and
correlations to find the amount of heat transfer augmentation due to
surface waves by comparing with results for constant film thickness. Even
though the nature of the waves could not be identified in general, the heat
transfer enhancement due to waves appeared to be significant. The study
covered the cases of heating, evaporation and gas absorption and identified
the nature of the augmentation peculiar to each of these cases. In a later
study, Faghri and Seban (1981) presented a theoretical analysis of wavy
flow assuming a sinusoidal form of the wave. A numerical treatment of
turbulént flow was presented bf Seban and Faghri (1976) for three different
turbulence models. The numerical and asymptotic solutions were compared
with their own data as well as previous experiments by Chun and Seban
(1971). 1In all these numerical heat transfer studies related to falling
films, the height of the free surface was assumed to be constant at its
equilibrium value except for the wavy flow where a sinusoidal form of the

wvave was assumed.

The radial spreading of a liquid film over a horizontal plate is also

an interesting free surface problem. VWatson (1964) presented results of



analytical and experimental studies of the radial spread of a liquid jet
impinging on a hérizontal plane for laminar and turbulent flows. By using
the boundary layer approximations for the governing equations, analytical
solutions were derived using‘a similarity transformation along with the
Pohlhausen integral method. The analysis covered the regions where the
boundary layer thickness is less than the film height and where the film is
totally engulfed by the boundary layer. The effects of the gravitational
pressure gradient was discussed. The possibility of a hydraulic jump in
such a flow was also anticipated. However, the analysis was applicable
only to supercritical flow before. the jump. An equation was presented to
predict the jump height for any given location of the jump. The agreement
between the experimental data and the analysis was satisfactory. In this

study, the fluid, plate, and the surroundings were maintained at the same

temperature and no heat transfer was present.

Another area of thin film research is the spreading of a film under
the action of a centrifugal force as seen in a rotating system. Sparrow
and Gregg (1959) developed ﬁn -ahalytical solution for condensation of
saturated vapor on a rotating surface. The complete Navier-Stokes and
.energy equations were simplified to a set of ordinary differential
equations by using a similarity transformation and then integrated
numerically. Their results gave the condensate layer thickness and the
heat transfer coefficient along with temperature and velocity profiles.
Later, Butuzov and Rifert (1972) performed experiments to verify the
solution of Sparrow and Gregg (1959). In a more recent study, Butuzov and
Rifert (1973) presented experimental as well as theoretical results for the

reverse problem of film evaporation from a rotating disk.
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In all of the previous studies concerning thin liquid films, the
investigators have tried to develop analytical models or have taken
experimental data. Some of these models are quite approximate in nature
and do not bring out the finer details of the flow {field. A numerical
finite-difference solution was attempted only for a falling film flow where
thickness is uniform and known ahead of time. In general, a free surface
flow is difficult to solve by the finite-difference method since the
surface geometry changes along the path of the flow, is unknown ahead of
time and cannot be fitted in a regular Cartesian or cylindrical coordinate
system. Moreover, none of the studies mentioned above considered the flow
under a reduced or zero gravity, which is expected to be different from the
flovw under normal gravity. A proper understanding of such flows is

essential in the design of space-based cooling systems.

In a very recent study, Rahman et al. (1989a) (described in section
ITI of this report) have developed a finite-difference solution method
applicable for fluid mechanics of thin film flows under zero and normal
gravity. A body-fitted codrﬂinate system vas used where the free surface
wvas approximated by a curve and iterated for the best possible solution.
The present study is a continuation of that work where an analysis of the
heat transfer to a thin film is given. In addition to numerical heat
transfer results, the present study includes an approximate theoretical
analysis using the Pohlhausen integral method. The results illustrate the

effects of gravity on the transport for both plane and radial flows.

4.3 NATHEMATICAL XODEL

The flow configurations considered in the present investigation are
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shown in Fig. 4.1. They can be broadly classified into three groups
according to the'presence and orientation of the gravitational body force:
(1) Falling film along a vertical wall

(2) Film flow under zero gravity

(3) Film flow along a horizontal plate in the presence of gravity.

The three possible orientations with respect to gravity are demoted by 1,

2, and 3. Moreover, P and R denote plane and radial flows.

The first case is a classical problem where the major driving
mechanism is the gravitational body force. This problem is used to check
the accuracy of the present numerical scheme. The effects of introducing
the film at a height other than the equilibrium height for a given flow

rate will be investigated for this case.

For film flow under zero gravity, two problems will be considered:
(2P) Plane film flow under zero gravity

(2R) Radial film flow under zero gravity

In the absence of any gravitational body force, the orientation of the
plate becomes immaterial. The flow remains the same whether the plate is
vertical, horizontal or inclined. In this case the flow 1is driven by
inertia and viscous forces. In the radially spreading flow, the area
available for the film increases downstream and acts as an added mechanism

for the reduction of the film velocity.

In the third group, two problems will again be considered according to

the flow geometry under consideration:
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i e,

(3P) Plane film flow along a horizontal plate in the. presence of gravity

(3R) Radial filn flow along a horizontal plate in the presence of gravity

In the case of horizontal thin film flow where the gravitational body
force acts across the thickness of the film, different flow regimes (i.e.,
supercritical, subcritical or both) may be present according to the local
film velocity and height. The transition of the flow from supercritical to
subcritical takes place through a hydraulic jump. Since a sudden
transition of the flow takes place across a jump, special analytical and

computational tools are required to, calculate the flow around this singular

point.

Two different heating conditions are considered. They are an
isothermally heated plate (denoted by symbol T) and a uniform heat flux on
the plate (denoted by H). The thermal condition on the free surface may be
different depending on whether or not there is any evaporation on that
surface. In the case of simple heating with no evaporation, the free
surface may be assuhed to be .adiabatic in nature. In the case of
evaporation, the free surface temperature will be the same as the
equilibrium temperature corresponding to the ambient vapor pressure. In
the present study, the evaporation is assumed to be small so that the loss

of fluid at the free surface is negligible compared to the mainstream flow.

The equations governing the conservation of mass, momentum and energy

in a thin film may be written as
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pﬁ=-Vp+#V2V+ps (4.2)
H=av?T (4.3)

The fluid is assumed to be Newtonian with constant properties over the

range of temperatures encountered in the problem.

The body-fitted coordinate system is shown in Fig. 4.2. The local
coordinate axes are directed along the 1lines joining the centers of
adjacent grid cells. The z-axis is directed in the streamline direction
and the y-axis across the thickness of the film. The velocity resolutes in
the 2z- and y- directions are w and v, respectively. The boundary

conditions are given by:

at y = 0: v=w=0
T = Tv, for isothermal wall
{ o (4.4)
-K % - q, for constant flux wall
at y = ¢ r=0, v=0, p=20
{ q = 0, for heating (4.5)
T = Tsat’ for evaporation
at z = 0 or . : Vo= vin’ for uniform entrance
) in' { . (4.6)
)© ], for parabolic

W LV [2(3) -

o

entrance
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B L
at z = L or Tout® Tz " 0
p
Lo

The difference between the static pressure in the flow and the ambient

0, for‘cases 1 and 2 (4.7)
pg (6 - y), for case 3

1}

pressure is denoted by p. On the free surface this quantity has to be zero

when the surface tension is negligible.

4.4 NUNERICAL SOLUTION PROCEDURE

The governing conservation equations (4.1 - 4.3) along with the
appropriate boundary conditions (4.4 - 4.7) were solved numerically using a
finite-difference scheme. Since the free surface geometry cannot be
handled very well with a regular rectangular or cylindrical coordinate
system, a boundary-fitted curvilinear coordinate system had to be used. In
this system, the free surface of the film was used as one of the boundaries

of the control volume.

As shown in Fig. 4.2, the local coordinates are defined along lines
joining adjacent cell centers. The z-axis was taken in the streamline
direction and y-axis in the direction across the film. The resolutes of
the velocity vectors in the y- and z-directions are v and w, respectively.
In general, the coordinate system was non- orthogonal in nature, 1i.e., the
faces of a grid cell are not orthogonal to each other. The velocity and
force vectors were resolved into covariant components and the problem was

solved in its physical domain.

The finite-difference equations were derived by the application of the



principle of the conservation of mass, mo?entum,’and energy to the grid
cells. The tranéport processes for each cell are convection and diffusion.
The mass flux across a cell bounéary wvas computed exactly from the scalar
product of the velocity vector and the vector representing the area of the
cell face. Note that this can be written out in terms of velocity
resolutes and geometrical factors including angles between cell faces. In
the calculation of convection across a cell face, special attention was
given to the change of the orientation of the coordinate axes from cell to
cell and the curvature of a cell face. This resulted in extra terms in the
calculation of convection. Howeve{, the representation of convection was

exact and did not involve any approximation due to the non-orthogonality of

the grids.

The calculation of diffusion was somewhat more complicated than
convection. The diffusion flux was calculated assuming the coordinate
system to be locally orthogonal. This neglected the effects of cell
curvature and non-orthogonal orientation. However, the effects were small
in the thin film caiculafion since the flow is convection dominated,

particularly when the film entered the control volume with a reasonably

high velocity.

The relative importance of convection and diffusion at each cell was
determined from the magnitude of the 1local Peclet number. A hybrid
difference  scheme demonstrated by Patankar (1980) was used. The
calculation of the momentum source due to the pressure gradient and that
due to the gravitational body force could be accomplished without any

approximation for non-orthogonality.
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The grid generation was achieved in two steps. -First, the grid cells
wvere formed by‘algebraic interpolation between the boundary points. This
provided an approximately equal volume for each control cell. The
boundaries for the interior cells were then smoothed to make the cell faces
more orthogonal to each other. This operation resulted in a better
representation of diffusion in the flow field and more accurate
computations. A more elaborate discussion of the numerical formulation is
presented in Rahman et al. (1989a) (or section III of this report) and the
methodology used here is similar to the work by Galea and Markatos (1987)

where a body-fitted coordinate system was used to predict fire development

in an aircraft.

The number of grids in the z-y plane was determined from a series of
computations with different grid sizes. For radial flow, it was found that
the free surface height along with other computed quantities do not change
any further if the computational mesh is refined beyond 50 x 25 grids in
z-y direction. For plane flow 40 x 20 grids in the z-y plane was found to
be adequafe, which pfeéiself predicted the. friction and heat transfer
coefficients and the velocity profile in a falling film system. Therefore,
all of the computations were carried out using 40 x 20 grids for plane flow

and 50 x 25 grids for radial flow.

The flow field was solved by using the SIMPLEST algorithm as discussed
by Spalding (1980). One special feature of this algorithm is that in the
discretized form of the momentum equation, the convection terms are lumped
together with the source term. This results in a faster convergence for

some flow conditions. The algorithm works in an iterative manner where the
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continuity equation is transformed and ased as a pressure correction
equation. The computation starts by guessing a pressure field. This 1is
used to determine the velocity components from their corresponding momentum
equations. The modified coﬁtinuity equation is then used to determine the
amount of pressure correction. The guessed pressure, the amount of
pressure correction and the solution corresponding to the momentum
equations are then assembled together to give the flow rate and pressure
field for that step. The new pressure serves as a guess for the next step.
In each step, once the velocity components are known, the temperature field
is determined by solving the energy- equation (4.3). Since temperature is a
scalar quantity and its equation is linear, the computation of temperature
is less involved than the velocity components. The solution proceeds until
the normalized residual for each equation was approximately 10_6. In the
free surface flow discussed here, both the zero- shear condition and the p =
0 condition at the free surface need to be satisfied. These two conditions
cannot be simultaneously given at a boundary with the existing program. (n
the other hand, the free surface geometry, which is unknown in the problem
has to be given before solving the flow field by a finite-difference
method. To avoid this difficulty, an iteration scheme has been adapted as
described below.
(a) Guess a free surface height distribution.
(b) Solve the flow and temperature fields completely for that height
using the zero-shear condition on the free surface boundary.
(c) Find the pressure distribution on the free surface and calculate
1ts deviation from an ideal zero-pressure free surface. The
meisure used here is the normalized RXS (root-mean- square) error

referenced to the initial total head, which is defined as
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1 2
‘ = % 1p)
nk=1 X

Normalized BRMS Error =-
pvin2
(p8 b +—5—)
vhere Py is the free surface pressure at the kth node and n is
the number of nodes adjacent to the free surface.
(d) Calculate and reduce the BMS error on the free surface by
successive alteration of the surface height distribution.

(e) The results with the minimum error give the required final

solution.

The optimization technique used here is known as the exhaustive search
method. In this method, a general form of the equation representing the
free surface is assumed. The equation containes a number of arbitrary
parameters depending on the desired degrees of freedom. To start the
process, the parameters are given values either from experience (i.e.,
analytical solution) or just guessed. Only one parameter is changed
keeping others constant and the trend of RMS error is observed. That
parameter is changed continuously in successive steps until a minimum in
RMS error is obtained. The parameter is then kept at its optimum value and
the other parameters are changed one by one following the same procedure.
Once the first round of optimization is complete, the first parameter 1is
changed again in either direction to see whether the error increases or
decreases. The process is continued with the other parameters until an
absolute minimum for a combination of parameters is obtained. The accuracy
of this process depends somewhat on the assumption of the form of free

surface. In the results presented here, hyperbolas with two or more



degrees of freedom were used to represent the computational domain.

The algorithm had to be modified slightly when a jump was present in
the flow field, as in the case of horizontal film flow in the presence of
gravity. Under some flow conditions, both supercritical and subcritical
flows are present, separated by a hydraulic jump. Vhen a jump was present,
the two regimes of the flow ( i.e., supercritical and subcritical) had to
be computed separately and the conditions were matched at the jump

interface. It involved the following operations.

(a) Compute the supercritical film height by imposing the inlet film
height and velocity and optimizing the free surface height
distribution to give the minimum RMS error in the pressure.

(b) Calculate the jump height from the supercritical film height using the

equation

-1 H 1+9.6Frs - 1 ] B (4.8)

s

wvhere subscript ’1’ denotes the supercritical condition before the
jump and ’2’ denotes the condition following the jump. This
relationship can be derived from the momentum balance at the jump.

(c) Compute the subcritical film height by imposing the flow rate and exit
film height and optimizing the free surface profile to give the
minimum RMS error in the pressure.

(d) The supercritical and subcritical flows are calculated for the same

flow rate, but for supercritical flow the inlet Froude number is
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fixed, whereas for subcritical flow the exit Froude number is fixed.

(e) The intersection of the jump height and the subcritical film height
determines the location of the jump. The film height before the jump
is given by the supercritical height whereas after the jump the film
height is given by the subcritical height.

(f) The heat transfer coefficient for the supercritical part of the flow
is determined from the supercritical temperature field, where the
inlet temperature to the control volume corresponds to the actual
inlet temperature.

(g) The inlet temperature for the subcritical flow is determined from the
exit bulk temperature corresponding to the supercritical solution. By
imposing  this condition, the energy balance at the jump is
automatically attained. The heat transfer coefficient in the

subcritical flow 1is then determined from the subcritical temperature

field.

In order to increase the computational accuracy for the subcritical
and supercritical flows, the flow invol&ing a hydraulic jump was assumed to

have a parabolic velocity profile at the inlet.

4.5 RESULTS AND DISCUSSION

4.5.1 Falling Film

The flow and transport in a falling film is a widely studied problem
in classical thermo-fluid mechanics. In fully-developed laminar flow, an
analytical solution can be derived for the velocity and temperature fields.
A numerical computation using the present methodology was performed for a

film which has already reached the fully-developed condition at the
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entrance. A parabolic velocity profile with Ehe same shape as given by the
analytical solution was used for the incoming fluid. The Reynolds number
for the film vas Re = 12.5. It ;as found that for the entire domain, the
velocity profile across the film remains about the same and the friction
coefficient was equal to that of the analytical solution. This shows that
the physical characteristics of a fully-developed flow is retained in the
numerical solution. The distribution of pressure on the free surface was
also computed and the normalized RMS error was determined to be 0.011.
This non-zero value of the error may be attributed to the inaccuracy
associated with the representation of the flow field.by finite-difference
equations. This error can be further reduced by more grid points and more

degrees of freedom in the free surface equation.

The developing flow of a falling film when introduced at a height
equal to, above, or below the equilibrium height was also investigated.
The flow conditions are summarized in Table 4.1 and the results are shown
in Figs. (4.3 - 4.5). Vhen the film enters the control volume at the
equilibfium height, thé height remains the same and the development of the
velocity profile from uniform to parabolic occurs as the flow moves
downstream. When the film enters with a height other than the equilibrium
height, a gradual adjustment of height takes place until the flow reaches
the equilibrium height. The adjustment of the free surface and the
development of the velocity and temperature profiles occur simultaneously

in this flow.

For the computation where & = 6fd’ the normalized RMS error on the

free surface pressure was found to be 0.073. The uniform entrance
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Table 4.1: Flow Parameters and Free Surface Geometry

- — — 0 )
General data: Tin = Tsat = 10°C
T, = 30°C, for isothermal wall

q, = 1000V/m2, for constant flux wall

Case 1PA: 6in = 6fd (= 0.000595 m)

Be =50, Pr=7, L =0.03m

Free surface: A = Afd

Case 1PB: Jin

Re =50, Pr=7, L=0.03m

_ -0.2, for ¢ < 0.2

Free surface: { A=(1+75¢)

A= bgy, for £20.2

Case 1PC: 6in = 0.8 5fd
Be =50, Pr=7, L=0.03m
| o 0.0445, for ¢ < 0.05

Free surface: { A = (1 + 3000 &)

A = Afd , for £ > 0.05

Case 2P: 6in = 0.000595 m

Re = 50, Pr=7, L=0.03m

Free surface: A = (1 + 10 5)0'93

(Continued on next page)
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Case 2R: 6in 0.005 m, 5

Re = 1616, Pr =7, r; =0.0508 m, T
0.64

out - 0.1953 m

Free surface: A = (1 + 1.43 §)

Case 3PA: Frin = 5.7, Frout = 1.0

Be = 355, Pr =7, L =0.1445m
Free surface:

= (1 +1.47 ¢

)1.52
8.42 [2-(1.04 + 0.29 ¢)1*%], subcritical (¢ < 1)

, supercritical

Py
[ = = ]
i i

Case 3PB: Fr.
in

1l
[@ o]
D
ey
la ]

|

—

o

Re

It

355, Pr=17, L =0.1445m

Free surface:

= (1 + 1.47 {)1‘83, supercritical

11.11 [2 - (1.04 + 0.29 ¢)1*°], subcritical (¢ < 1)

e
- (=
1) |

rey
o]
"

Case 3RA: 7.4, Fr = 1.0

=]
o
1l

202, Pr =1, - 0.0639 m, r ut - 0.1953 m

0

Free surface:

(1 +2.05 ¢ , supercritical
8.51 [2 - (1.04 + 0.37 &)1*4], suberitical (¢ < 1)

)2.2

e,
B
" 1

Case 3RB: Fr. = 11.0, Fr_, = 1.0

Re. =202, Pr =17, I, = 0.0639 m, Tout = 0.1953 m

Free surface:

2.7
)

{ A= (1+ 2.05¢ , supercritical

A= 11,01 [2 - (1.04 « 0.37 )14, subcritical (¢ < 1)
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condition has a higher RMS error than the parabolic entrance since a
developing flow region is present where the pressure has to conform with
the flow development. An error of this order may be acceptable for a free
surface computation since no variation of height is expected to take place
vhen a film is introduced at the equilibrium height. In addition to
obtaining the height distribution with the minimum error, the normalized
BMS error corresponding to the optimum free surface profile does not exceed
a limit of 0.1. The distance required for flow development was found to be
about five times the film thickness in this case. A flow is defined to be
fully-developed when the wall shear -stress is within 2 percent of the final
equilibrium value. This definition is similar to that given by Kays and

Crawford (1980) for developing flow in closed conduits.

The distance required for the development of the temperature profile
vas found to be somewhat larger than the flow field. For an isothermally
heated wall, the heat transfer coefficient reached within 2 percent of its
final equilibrium value at about 205fd for heating and 406fd when
evaporation was present on the free surface. In the case of evaporation,
the fluid was assumed to enter the control volume at its saturation
temperature. A flow with a uniformly heated wall required a somewhat
longer entry length, which were 256fd and 456fd for heating and
evaporation, respectively. It can be noticed that pure heating has a
smaller entrance length than that of evaporation. In both cases, the heat
transfer coefficient is very high near the entrance and reduces downstream.
Since heating has a higher heat transfer coefficient, it requires a smaller
length for development than the length required for evaporation. It is

also worth mentioning that the definition of the heat transfer coefficient
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is different in the two cases as given by .

v

q, (T, - Ty), for heating
) { q, (Tw - Tsat)’ for evaporation

(4.9)

Figure 4.3 shows the variation of the film height along the plate.
The adjustment of the film height takes places for a length of
approximately 105fd vhen the film is introduced at a height of 20 percent
more than the equilibrium height. In this situation the velocity profile
also becomes fully-developed at the same location. A film introduced at a
height of 20 percent lower than the.equilibrium is found to take a shorter

distance for the adjustment of the free surface and the velocity profile.

The wvariation of the Nusselt number along the length of the film are
shown in Figs. 4.4 and 4.5 for isothermal and uniformly heated surface

conditions, respectively. The Nusselt number here has been defined as

2

h v
( g

Mu = y1/3 (4.10)

This definition is more widely used in falling film literature where
(zfz/g)l/3 has been used as a length scale. Another way of defining the

Nusselt number is in terms of the film thickness as given by

* hé
Nu = K— (4.11)

This 1is more universal and applicable for zero gravity flows which will be

discussed in a subsequent section.

151



In all cases, the Nusselt number is very high near the entrance. This
is because the thermal boundary layer starts developing from the entrance
point on the plate. It decreases downstream and eventually attains an
asymptotic value when the flow is fully developed. The distribution for
5in = 6fd and 6in = 0.8 5fd coincide with each other and differ by a small
amount from the distribution for 5in = 1.25fd. A smaller heat transfer
coefficient near the entrance when 5in = 1.26fd is due to the fact that
local film thickness there is larger and offers a greater resistance to
heat transfer. Moreover, the average fluid velocity there is smaller for
this case. It also appears that the heat transfer coefficient becomes
uniform downstream whether the film is introduced at a larger or smaller
height than the equilibrium. This is analogous to the previous observation
that the film height also attains the equilibrium value after some distance
from the inlet. The Nusselt number in terms of film thickness, Nu*, was
also computed. It was found that in the case of evaporation, the Nusselt

number asymptotically approaches unity, the value predicted by the analysis

of fully developed flow.

4.5.2 Film Flow Under Zero Gravity

In a gravity-free environment, the orientation of the plate becomes
immaterial and an identical flow condition is achieved whether the plate is
horizontal, vertical, or inclined. A plane flow is first considered where
the film is introduced at a height equal to the equilibrium fully-developed
flow in a falling film system as discussed in the previous section. The
free surface is modeled by assuming a height distribution of the form given
in Table 4.1. The constants appearing in this equation are optimum values

determined by the minimization of the error of the free surface pressure.



The results are shown in Figs. (4.6-4.8). .

Y

Figure 4.6 shows the variation of the film height along the plate,
vhich increases monotonically. In the absence of gravity, the flow is
acted on only by viscous and inertial forces. The effect of inertia is
maximum at the entrance and decreases downstream. The resistance from the
wall acts to slow down the fluid, which results in an increment in the
height in order to preserve the continuity of the flow. The variation of
the Nusselt number for different boundary conditions for this case are
shown in Figs. 4.7 and 4.8. The shape of the curves appear to be similar
for pure heating and evaporation, but differ somewhat between the

isothermally heated and the uniform heat flux surface conditions.

The Nusselt number considered here is Nu*, which depends on two
parameters, namely, the film height and the heat transfer coefficient. As
expected in any developing flow, the heat transfer coefficient is maximum
at the entrance and decreases downstream. The film height, however, has an
opposite trend. The net result is the variation‘presented in Figs. 4.7 and
4.8. The sudden drop of the Nusselt number near the entrance is due to the
rapid change of the heat transfer coefficient as the thermal boundary layer
develops from the leading edge at the entrance section. Except for this
region, the Nusselt number has a small variation if the plate is
isothermal. Moreover, when there 1is evaporation over an isothermal
surface, Nu* is about unity. This shows that heat transfer process becomes
primarily diffusive after a short distance from entrance. W¥hen the plate
1s uniformly heated, the Nu* gradually increases downstream after the

sudden drop close to the entrance. In this case, the reduction of the heat
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transfer coefficient with distance is relatively smaller and easily
overpowered by the increment in the film height. Analogous to the falling
film system, the Nusselt number for heating is always found to be larger

than that for evaporation.

The situation where a fluid is introduced at the center of a circular
plate and spreads uniformly in all radial directions is now considered. In
a radially spreading flow, the area available for the fluid increases
downstream and acts as an added mechanism to control the film height and
the associated transport phenomena. Since spreading tends to reduce the
film thickness and friction tends to increase it, the height of the film
may increase or decrease downstream depending on the flow rate and inlet
height. The behavior of the flow may be characterized by the inlet
Reynolds number. The optimum film height distribution for Re, = 404 is
given in Table 4.1 and 1is graphically shown in Fig. 4.6. For this

particular flow condition, the film height decreases monotonically

downstream.

The Nusselt number variations for radial flow considered here are
shown in Figs. 4.9 and 4.10. Analogous to the plane flow case, there is a
sudden drop of Nu* close to the entrance. For a uniformly heated surface,
the Nusselt number keeps decreasing downstream for the heating and
evaporation situations. In most developing flows, the heat transfer
coefficient is maximum at the entrance and decreases with the growth of
thermal boundary layer. In this case, the film height also decreases
downstream, so this trend in the Nusselt number is expected. For an

isothermal surface, however, the Nusselt number drops to a minimum at an
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intermediate location on the plate and then gradually increases as the flow
moves further éownstream. This trend also indicates that, for an
isothermal surface, the heat transfer coefficient has to have a minimum at
an intermediate location on the plate. In the results of the heat transfer
coefficient, it was found that a minimum i1s indeed present for both
isothermal and uniformly heated surfaces. This phenomenon can be explained
by the fact that in a radially spreading flow with the rapid reduction of
the film thickness, the thermal boundary layer engulfs the entire film
dovnstream from entrance for a moderate Prandtl number fluid considered
here. Therefore, with a further reduction of film thickness, the thermal
boundary layer thickness also decreases and results in a reduction of the

resistance to heat transfer from the wvall to the fluid.

It is also worth mentioning that for both plane and radial flows at
zero gravity, the flow field never came to an equilibrium fully-developed
condition. The velocity profile across the film thickness, however,

appears to be parabolic at most locations of the flow.

4.5.3 Horizontal Film Flow in the Presence of Gravityv

The flov of a plane film and a radially spreading film were also
investigated for a horizontal orientation of the plate where the gravity
acts across the thickness of the film instead of in the direction of the
main flow. The flow conditions used here and the corresponding free
surface height distribution are listed in Table 4.1, Figures (4.11-4.16)

present the computational results.

Two different flow regimes are encountered in the case of horizontal
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flow. The flow 1is either subcritical or Supercritical depending on the
Froude number. fhe subcritical and supercritical flows move towards a
critical condition. Vhen the flow enters the control volume as
subcritical, it remains subcritical in the entire domain since a transition
from subcritical to supercritical is not possible. However, if the flow
enters the control volume as supercritical, it may remain supercritical or
transform into a subcritical flow depending on the amount of inertial,
gravitational, and viscous forces it encounters during the flow. MNoreover,
if a transition is present it must happen as a jump where the height before
and after the jump can be related.by the jump condition [equation (4.8)].
In the present investigation, the supercritical and subcritical stems of
the flow were computed separately and the location of the jump was
determined via the jump condition. In the computation of supercritical
flow, the inlet height and Froude number were appropriately satisfied,

whereas for subcritical flow, the outlet condition was satisfied.

In Figs. 4.11 and 4.14, it can be noticed that the jump moves
downstream with an increase in the inlet Froude number. VWhen the inlet
Froude number is high, the flow can maintain its supercritical status for a
longer distance. It can also be seen that the propagation of the jump
location downstream with an increase in the Froude number is greater for
the plane flow than the radial flow. In the case of radial flow, the area
increases downstream and causes the flow to slow down. This results in
more rapid reduction of the Froude numbér of the flow. Therefore, in a
radial system a jump is likely to be present for a larger range of inlet

Froude numhers.
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The distribution of the heat transfer coefficient for different
thermal boundarf conditions are plotted in Figs. 4.12 and 4.13 for plane
flow and in Figs. 4.15 and 4.16 for radial flow. It appears that the
Nusselt number decreases rapidly close to the entrance as the thermal
boundary layer develops. Also, the Nusselt number increases at the
location of the jump. A sudden transition of the flow happens at the jump
and the thermal boundary layer starts growing again after the jump. In the
present study, the heat transfer in the supercritical and subcritical flows
vere computed separately by matching the temperature and heat flux at the
jump location. Therefore, the .heat transfer coefficient at the jump
location may not be correct. However, the trend that the heat transfer
coefficient increases at the jump is consistent with the physical behavior
of the flow. Except for the jump and leading edge of the boundary layer,
the Nu decreases slowly with the horizontal distance in the supercritical
part of the flow and remains approximately constant in the subcritical stem
of the flow. In Figs. 4.11 and 4.14, it is noticed that for both plane and
radial flows, in ~supercritical regime the film height increases with
distance, whereas in .the subcritical regime it decreases with distance.
Vhen the height of the free surface increases and the fluid velocity
decreases, the heat transfer from the plate to the fluid is expected to
decrease downstream. In subcritical flow, however, the fluid wvelocity
itself is smaller and a balance is established between the thickness of the
thermal layer and the velocity of the fluid near the wall. Figure 4.13
also shows a plot of Nu* for the case of heating on a horizontal uniform
flux surface. It can be noticed that the increment of Nu* at the jump is
much larger than that corresponding to Nu. Since the film height and heat

*
transfer coefficient both increase at the jump, this rise in Nu is quite
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*
expected. The figure also shows that the numerical value of Nu approaches

the value predictéd by theoretical solution.

4.6 CONCLUSIONS

Numerically computed results for heat transfer in a thin liquid film
are presented. The flow situations considered are: (a) plane falling film,
(b) plane and radial flow under zero gravity and (c) plane and radial flow
on a horizontal plate in the presence of gravity. In all cases, two
thermal boundary conditions at the wall, namely, isothermal and constant
heat flux, and two free surface thermal boundary cbnditions, namely,
adiabatic and evaporative are considered. A curvilinear body-fitted

coordinate system is used to handle the irregular flow geometry.

It was found that in a falling film system, an equilibrium
fully-developed region is present where the gravitational body force 1is
balanced by the viscous shear force at the wall. The film, whether
introduced at the equilibrium height or at a height above or below the
equilibrium, eventualiy attains' this fully-developed condition. In the
fully developed region, the numerical velocity profile matched exactly with
the analytical solution irrespective of the entrance condition of the film.
The heat transfer coefficient also attained itsrfully—developed value and

matched well with the analytical solution for all of the entrance

conditions.

The length required for the development of the flow was found to bhe
small. Both the free surface height and the velocity profile appeared to

arrive at the equilibrium condition within 10 times the equilibrium film
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thickness. The development length was found to be relatively larger for
heat transfer. Ahlength of 20-25 times the film thickness was required for
the development of the equilibrium heat transfer conditions wvhen the film
vas just heated and no evaporation was present on the free surface. In the
presence of evaporation, the development length was even longer, being
about 40-45 times the film thickness. There was a small difference in the
heat transfer coefficient and the development length for differemt entry

conditions considered here.

For a plane flow under zero gravity, it was found that the film
thickness monotonically increases as the flow moves downstream. For an
isothermally heated wall, the heat transfer coefficient gradually decreased
downstream. The Nu* in this situation was approximately constant except
for regions very close to the entrance. For a uniformly heated wall, the

*
Nu reached a minimum at an intermediate location close to the entrance and

then increased slowly downstream.

In the case of fadial flow undeg‘zero gravity, it waé found that for
the flow rate considered here the film thickness decreases monotonically as
it spreads downstream. In this situation, the Nusselt number was also
found to decrease monotonically when the plate is uniformly heated. For an
isothermal wall, however, the Nusselt number reached a minimum and then
slowly increased downstream. This behavior of the heat transfer is related
to the thinning of the film and growth of thermal boundary layer in a

diffusion-dominated heat transfer process.

For both plane flow and radial flow on a horizontal plate in the
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presence of gravity, two different flow regimes (i.e., supercritical and
subcritical) are found to be present. The transition of the flow from
supercritical to subcritical is accompanied by a hydraulic jump. The
location of the jump moves downstream with an increase in the inlet Froude
number. The heat transfer coefficient is discontinuous at the jump. In
the supercritical region, it decreases gradually downstream, whereas in the
subcritical region, it remains approximately uniform at most locations on

the plate.
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Section Y

DEVELOPMENT OF A NEV COMPUTATIONAL METHODOLOGY FOR THE
FREE SURFACE FLOWS USING A PERMEABLE VALL

5.1 SUMMARY

A new computational procedure for determining the structure of the
free surface flow of a thin liquid film is presented. The iterative method
assumes the free surface to be a porous wall where transpiration through
the wall is allowed while maintaining it at a constant pressure condition
with no shear stress. The Eulerian computation uses a body-fitting
coordinate system and an iteration procedure wvhere successive improvements
of the free surface geometry is attained from the velocity components on

the free surface. In the final iteration, the transpiration becomes

negligibly small and thereby the free surface forms a streamline. This new

algorithm has the advantage over existing computational methods in that a
complete two-dimensional solution of the flow field and heat transfer
coefficient can be obtained and can be applied to complex flow problems
like a hydraulic jump. The computed results include plane and radial fiows
involving a hydraulic jump and those flows at zero gravity where no jump
can be present. The details of the flow structure, the friction

coefficient and the heat transfer coefficient are presented.
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5.2 INTRODUCTION

Free surface flows are encountered in a wide variety of physical
phenomena. The flow in a river or water channel, the flow of a thin film
during evaporation or condensation, and the impingement and spreading of a
liquid jet on a solid wall are a few examples. All of these phenomena
share a common feature in that the domain of interest has an unknown
boundary, the structure of which depends on the flow and the ambient
conditions. The complexity of the subject is associated with the knowledge
of the free surface location in conjunction with the satisfaction of the
appropriate boundary conditions and governing equations. These flows are
also heavily influenced by the magnitude and direction of the gravitational
body force. The motivation of this study is to develop a comprehensive

computational tool for free surface flows both on earth and in space.

Like any external flow adjacent to a solid surface, the viscous
effects in a free surface flov are also confined to a boundary layer
adjacent to the SOlld boundary Therefore, 1nv1sc1d flow models can be
used for flows 1nvolv1ng a depth much larger than the boundary layer
thickness. The open channel flows in a river fall into this category. An
extensive review of numerical nethode for potential flow involving a free
surface is presented by Yeung (1982). His review covered both linear and
non- linear flow problems and three major categories of methods:
finite—difference, finite element and boundary 1ntegral equations. The
possibility of using a boundary-fltted coordlnate system for the
representation of free surfaces was also discussed. He concluded that
hybrid methods based on matching an interior numerical solution with an

exterior analytical representation is the most rational procedure.
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The potential flow solution becomes inadequate when viscous effects
are important for the flow under consideration, and the solution of the
complete Navier-Stokes equation becomes necessary. The numerical
techniques presently in use for this class of problems can be divided into
three categories, namely, (a) surface-tracking methods, (b) volume-

tracking methods and (c) moving-grid methods.

In surface-tracking methods, the interface is specified by an ordered
set of imaginary points; between these points its position is approximated
by an interpolant, which is usually a piecewise polynomial. This
time- dependent interface divides the flow domain into connected regions in
vhich different fluids exist. One of the variants of the surface-tracking
method is the height- function method used by Hirt et al. (1975). The free
surface was represented by its distance from a fixed surface. This
distance (height) changed with time and was governed by an equation
expressing the fact that the interface must move with the local flow field.
A more commonly used technique to track a surface is to track a string of
imaginary particles spfééd along the.density iﬁterface. Awn (1979) applied
this method for solving flame propagation. Jun (1986) developed an
improved version of the interface-tracking method where the location of the
interface was solved by a scalar equation. He applied his technique to
compute the sloshing motion of a liquid in a tilted tank, as well as the

drainage of a pipe under normal and zero gravity conditions.

In a volume- tracking method, the interface is specified by the common
boundary of the twvo regions adjacent to each other. The region 1is

identified by its possession of fluid markers of a particular kind. The
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reconstruction of the actual surface shape requires the knowledge of fluid
markers in the area under consideration. One of the earliest volume-
track1ng methods is the Marker and Cell (MAC) method of Harlow and Velch
(1965). Marker particles are scattered initially to identify each fluid
region in the calculation domain. These particles are transported in a
Lagrangian manner along with the fluids. Amsden and Harlow (1970)
developed a simplified MAC method called SMAC, which had some mathematical
advantages over its predecessor. MNore recently, Hirt and Nichols (1981)
designed a different variation of the volume- tracking method called the

fractional volume of fluid (VOF) method, which requires less storage than

the MAC method.

In moving-grid methods, the original grid system can be adjusted to
approximate the interface. The governing equations are then solved on the
new distorted grid by treating the grid points on the density interface as
a moving boundary. In this manner, undesirable numerical mixing between
the different fluid regions is reduced or avoided. One way to formulate a
mdving grid ’algorithm is to use a rectangular Cartesian or cylindrical
coordinate system and at each iteration move the interface to the nearest
cell wall so that a grid cell always contains one particular fluid. A more
improved method, as used By Jun (1985), is to partially block a grid cell
to form the interface within a rectangular Cartesian or cylindrical grid

_cell.‘

The numerical methods described above have mostly used a Lagrangian
approach for solution and dealt primarily with transient problenms.

Xoreover, none of these studies have considered low Reynolds number flow
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like a thin film flow where viscous effects are predominant. In a very
recent study, BRahman et al. (1989a) (described in section III of this
report) developed a new moving-grid method, vhere a boundary-fitted
coordinate system was used and the free surface vas taken as one of the
boundaries of the computational domain. The primary emphasis of that study
vas to understand low Reynolds number flows as encountered in a thin film,
both in normal and zero gravity environments. Both plane flow over a
surface and radially spreading flow were considered. Their results showed
that the gravitational body force has a strong influence on the structure
of the free surface. A hydraulic jump was found to be present when a
gravitational body force acted across the thickness of the film. In that
situation, two distinct flow regimes were found to be present, which are
supercritical flow upstream from the jump and subcritical flow downstream
from the jump. In that study, the free surface was represented by an
analytical equation with two or more arbitrary comstants. The constants
vere optimized with an exhaustive search method where the final solution
most closely matched the atmospheric (or ambient) pressure distribution on
the free sﬁrfaéé. o \ : | o
Even though the study by Rahman et al. (1989a) handled most low
RBeynolds number flows fairly vell, difficulties were encountered in
handling flowé involviﬁg a hyaraulic juﬁp; vhere t§o‘£egioﬁs of the flow
(supercritical and subcritical) could not be computed as a single-domain
_ problem. The ;omputations vere dope separately for the two regions and the
solutions wvere mafched at thé 1ocatioh of the juﬁp. This procedure, even
though the location of the jump was correctly predicted, could not account
for the details of the flow field and heat transfer behavior in the

vicinity of the jump. An effort to remove this drawback led to the

176



invention of the present algorithm, which can solve the problems involving
a hydraulic jump as a single domain problem. It is essential to have this
feature in the calculation of thin film flow over a rotating surface, which
is one of thé motivations for the initiation of the present efforts. It is
also found that the present algorithm is more universally applicable to any
free surface problem in the presence or absence of a gravitational body
force. Unlike any other method presented above, the present procedure
assumes the free surface to be a permeable wall through which fluid may
leave or enter the control volume depending on the ambient and local static
pressures. The location of the surface is improved by successive

iterations until penetration through the free surface become negligible.

5.3 GOVERNING EQUATIONS

The present numerical methodology will be tested against a number of
steady free surface problems both in normal and zero gravity environments.
The problems considered here are schematically shown in Fig. 5.1. They are:
(a) The two-dimensional flow of a plane thin film over a plate, *as

infrdduced -from a ‘pressurized fluid reservoir in a gravity-free

environment.

(b) The radially spregding_floy‘of a thinvfilm over a plate as initiated
by an impinging flﬁid jet or pressurized reservoir at the center of
the plate in a gravity-free environment.

(c) The plane flow over a horizontal plate in the presence of gravity
vhere a‘hydraulié jump is pfesent. |

(d) The radially spreading flow over a horizontal plate in the presence of

gravity where a hydraulic jump is present in the computation domain.
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Fig. 5.1. The coordinate and flow systems in the present investigation
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In all of these problems, the heat transfer behavior in the liquid
layer will be studied by assuming the solid wall temperature to be higher
than the temperature at which liquid enters the control volume. The wall
also remains at an isothermal condition for the entire length'of the flow.
In the case of simple heating with no evaporation, the free surface may be
considered to be adiabatic in nature. In the case of evaporation, the free
surface remains at an isothermal condition with a temperature equal to the
saturation temperature corresponding to the ambient vapor pressure. For
the problems considered here, the evaporation is assumed to be small so

that the 1loss of fluid at the free surface is negligible compared to the

mainstream flow.

The equations governing the conservation of mass, momentum and energy

in a liquid layer involving a Newtonian, constant-property fluid can be

written as
-+ . .
y-V=0 (5.1)
2 - -
g%=-%Vp+vV2V+g (5.2)
g% - aV2 T (5.3)

Figure 5.1 also shows the coordinate system used here. The 1local
coordinates are directed along the lines joining the centers of the
adjacent grid cells. The z-axis is directed along the direction of the

mainstream flow and y-axis is directed across the thickness of the film.
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The velocity resolutes in the y- and 3z-directions are v and v,

respectively. The boundary conditions for the problems considered here are

given by
at y = 0 v=w=0, T=T (5.4)
- -+
at y=14 r.n = 0, .t =0
{q = 0, for heating (5.5)
T = Tsat’ for evaporation
at z = 0orr, : w=VW,, for uniform entrance (5.6)
{ v=1.5V, [2 (%) - (%)2], for parabolic entrance
v=_0
at z=Lorr ,: =0 =g (6- ) (5.7)
= out'a_z' ’ P = Pg Yy .
Fr = 1, for flows involving a jump

.

The normal stress condition on the free surface leads to equations
balancing the pressure and other stresses including surface temsion.
Scaling these equations, one can show that, for thin film flow where Re*
'éhd Ve 3réli££gé,.£ﬁe‘piessﬁfe 6nlbdth.sidégzofjthekfrée surface must be
the same. The quantity p is defined to be the difference between the
static pressure in the flow and the ambient pressure. In the absence of
any significant surface"tension and tangential stress from the ambient
fluid, this quantity becomes zero on the free surface. At the outlet end,

the pressure gradient is hydrostatic in nature. The local parabolic

approximation in numerical computation eliminate any rigorous specification
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of v and v at that point.

5.4 NUNERICAL SOLUTTON PROCEDURE

A finite-difference numerical scheme was used for the solution of the
governing equations (5.1-5.3) along with the appropriate boundary
conditions (5.4-5.7) for the different problems considered here. To
prdperly " handle the 'irregular ffeé surface geometry, a curvilinear
body-fitted coordinate system was used, where the free surface was taken as

a coordinate surface.

The computational domain was divided into a non-uniform mesh vhere
more grid cells were placed at locations where steeper variations of the
flow and heat transfer are expected to take place, like the vicinity of a
hydraulic jump. The cells were formed by an algebraic interpolation
between boundary points. In general, the cell faces were non-orthogonal in

nature.

»

The local coordin;teéiwere defined along lineé joining the adjacent
grid cells as shown in Fig. 5.1. The z-axis is in the streamline direction
and the . y-axis is across the thickness of the fluid layer. The velocity
vectors were resolved into co-variant componenté Ahd the problem was solved

in its physical domain.

The finite-difference equations vere derived by the application of the
principles of the conservation of mass, momentum and energy to the grid
cells. The derivations used ideas similar to those presented by Rahman et

al. (1989a) or section III of this report. The hybrid difference scheme,
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as demonstrated by Patankar (1980) was also incorporated in the

formulation. This basically determined the total contribution (convection

‘and diffusion) to a cell from its neighbors as a function of the cell

Peclet number.

The flow field was solved by using the SIMPLEST algorithm as presented
by Spaldlng (1980). One Spec1al feature of this algorithm is that in the
discretized form of the momentum equation, the convection terms are lumped
together with the source term. This results in a faster convergence than
its predecessors SINPLE or SIMPLER as described in Patankar (1980). The
STMPLEST method also works in a iterative manner where the continuity
equation 1is transformed and used as a pressure correction equation. The
computation starts by guessing a pressure field. This is used to determine
the velocity components from their corresponding momentum equations. The
modified continuity equation is then used to determine the amount of
pressure correction. The guessed pressure, the amount of pressure
correction and the solutlon correspondlng to the momentum equations are
then assembled together to glve the flow rate and pressure ‘field for that
iteration step. The new pressure serves as a guess for the next step. The
discretized = equations for the velocity components were solved slab- by- slab
marching in the z-direction, whereas the pressure and temperature were
solved by the vhole-field method. -The convergence of the solution was
monitored by examxnlng the normal1zed re51duals for each equation and by
spot- checking values of the pressure, veloc1ty components, and temperature
at critical locations in the flow. The computation proceeded until the
magnitude for all of the residuals became negligibly small and the

spot- checked values attained an invariant condition. The computed results
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vere also tested for grid independence by systematically varying the number
of grids in both the y- and z-directions. A value of 25 grids was found to
be adequate in the y-direction, whereas 50 to 150 grids were used in the

z-direction for the problems considered here.

In any computational scheme for a free surface flow, the major
difficulties encounteréd are'in handling the free surface itself. First,
the geometry of the free surface needs to be specified before solving the
flow using a finite-difference scheme. On the other hand, the geometry
itself is dependent on the flow conditions. Moreover, a number of boundary
conditions needs to be satisfied: (a) the free surface is a streamline (the
velocity vector on the surface must be tangent to the surface itself at all
locations) (b) a zero-shear condition must exist on the surface and (¢c) in
the absence of any significant surface tension, the static pressure of the
fluid next to the free surface must be equal to the ambient pressure. All
of these conditions are satisfied simultaneously for only the correct

location of the free surface, and therefore some of the conditions -are

violated when an assumed free surface profile is used to initialize the

solution process. Thus, one has a choice of which boundary condition he
vants to satisfy exactly. In the present algorithm, the boundary
conditions (b) and (c) are satisfied exactly, whereas an iteration process

is introduced to arrive at condition (a).

It is assumed that the free surface‘is a permeable wall through which
fluid particles may leave or enter depending on the pressure on the two
sides of the surface. The ambient pressure is prescribed. An outflow

takes place when the static pressure of the fluid inside the control volume
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is higher than the ambient pressure, whereas an inflow occurs when the
ambient pressure is higher. Since inflow or outflow is permitted, the
velocity vector at the surface is no longer aligned with it, so an
iter#tive scheme can be devised to adjust the surface so that a streamline
condition on the free surface can be approached. Another criterion to
follow is to minimize the loss or gain of fluid through the surface. The

scheme works as follows:

(1) Prescribe a free surface height distribution.

(2) Solve the flow field completely for that height using p = 0 as the
boundary condition on the free surface.

(3) Find the amount of penetration of the fluid through the surface at all
locations along the flow.

(4) Calculate the deviation from the zero- penetration condition. The
measure used here is the normalized root-mean-square of the

penetration.

2
1 (Qloss)k

1
n

L e R

k

Normalized penetration =
R o Uin

(5) Calculate the new free surface height by adding a correction to the
:old_height. As shown below, the correction is determined from the
Cértesian coﬁponents‘ éf -the velbcity} vector on or near the free
surface by satisfying the condition that the free surface is a
streamline. The method is analogous to the moving height function

approach used by Hirt et al. (1975).
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(6) Continue iterating until the normalized penetration attains a minimum
value.
(7) Once the location of the free surface is determined, solve for both

the flow and temperature fields for that surface profile.

The correction in the film height is determined from the penetration
rate at the free surface. The velocity component across the film that is

associated with the penetration can be estimated to be

_ d§
Vioss = V¢ - @z ¥¢ (5.8)

vhere A and v, are the Cartesian components of the velocity vector at the

cell next to the free surface. Ve need to drive v to zero to arrive at

loss
the streamline condition on the free surface. Therefore, a new height can

be determined as

i+l _
b= by

i, (

Az .
vloss) Iwc' . o (5.9)

A central difference is used to calculate the slope of the free surface

from the height in the previous iteration. This resulted in the equation

6 = 60 [0 - oz (- Gpy) (o] (510
: L B Yelx

An alternative formulation for the film height correction was also
derived by using the MacCormack predictor-corrector method, as presented by

Anderson et al. (1984), which resulted in the formulatiom:
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i+1 i 3 Yeyi 1 Vend i 3 i 3 i
I [8 e * 8 Gk 1] R ORES RS LT
for v > 0 (5.11a)

RSO xR RS ERE L L

for w, <0 | (5.11b)

The correction scheme needed to be modified slightly at the downstream
boundary since only the values on one side of the cell were available. The
upstream boundary did not pose any problem since the film height there
remained constant. Computations with either equations (5.10) or (5.11)

vere found to be equally good, and lead to the same final solution.

The procedure required a reasonably good guess of the initial free
surface height for uniform convergence within a reasonable number of
iterations. Since penetration is allowed on the free surface, a surface
profile far from the actual free surface produces outflow on the order of
the ﬁﬁinstré;ﬁ flo; ana 1e#d§ to divergencé. Therefore, an initial guess
is limited to a surface which yields penetration smaller in magnitude than
the mainstream flow. Im the calculations presented here, the start-up
solution was calculated using a ’pressureFOptimization method’ as presented
by Rahman et al. (1989a) or section III of this report. Since that method
is robust and vas available to us, it was used here to obtain faster
cbn?ergence. waéféf; ohe may start from an approximate analytical
solution given in section VI or the one-dimensional numerical solution
presented in section I. However, as expected the convergence time depends

on the initial condition. Hence, a crude starting solution may take a
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relatively longer period for convergence. The recommended procedure is to
use the present method in combination with the ‘pressure-optimization
method’ presented by Rahman et al. (1989a). The former doing the fine

tuning on the global variations predicted by the latter.

The correction scheme for the free surface height may require
under- relaxation to make the algorithm stable and uniformly convergent.
Also, some smoothing mey be required to get around fluctuations that are of
the same order of the grid size. VWhen the fluctuations were large, a
polynomial fit of the new height was used. As used by Hirt et al. (1975),
the smoothing of the free surface from one iteration to the next is

required to preserve a better continuity of the free surface profile.

In order to dampen out the effects of flow development, a parabolic
velocity profile is assumed to be present at the inlet during the iteration
procedure. Since penetration through the surface is primarily a function
of the pressure and ve10c1ty components, and the energy equation is not
coupled to the cont1nu1ty or momentum equations, the flow field is solved
first as an isothermal problem during the iterations and the energy
equation is solved only when the free surface location is established.

This minimizes the computational effort to some extent.

5. 5 ISCUSSIUN 0F lESULT§ .
5.5. 1 F11m Flows in the Absence of Grav1t1

Ve now consider the flow of a thin film in a gravity-free environment.
In the absence of any other body or surface force, the flow is acted on

only by inertial and viscous forces. Therefore, the orientation of the
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solid wall, whether vertical, horizontal or inclined, does not play any
role in the behavior of the flow. Both plane and radial flows are

considered here. The results are presented in Figs. 5.2-5.6.

The predicted variation of the film height for plane film flow under
zero gravity is presented in Fig. 5.2. The Reynolds number for the flow is
Re. = 50, uhich is in.the laminar flow regime. The properties used are for
vater at 20°C under normal atmospheric conditions. The film height
increases monotonically uith distance. As the fluid moves downstream, it
decelerates due to friction and consequently the height of the film
increases to preserve the continuity of the flow. The figure also shows
the film height predicted in previous investigations. The previous results
for two-dimensional flow using the pressure optimization method is quite
close to the present numerical solution. This is expected since both
studies preserved the two-dimensional behavior of the flow field, and did
not make any approximations to simplify the problem. One comstraint on the

free surface geometry in the studies of Rahman et al. (1989a) is that .the

free surface conforms to an algebra1c equatlon with two or three degrees of

freedom. This constraint is removed in the present study, where the free
surface can conform to the 1ocal flow conditions in a more exact fashion.

The degree of freedom attained here is the same as the number of grids in
the main flow direction. Even though an algebraic equation is easier to

use, the dlscrete representat1on of the free surface as done here leads to

~ more accurate results Figure 5. 3 shows the dlstr1but1on of the penetration

rate through the free surface. Comparing the amount of flow through the
free surface, it vas found that the present free surface has about 30% less

penetration than the surface predicted by the method in Rahman et al.
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(1989a) for the same flow conditions. The average penetration rate through
the surface was found to be only 0.6% of the entrance flow. This suggests
that the present methodology is practically applicable, and leads to

results that are more accurate than the previous two-dimensional method.

Pigure 5.2 also compares the film height with that predicted by Thomas
et al. (1989) where the variations of the velocity across the thickness of
the film were integrated out using a parabolic velocity profile and the
height was explicitly solved by using the MacCormack predictor-corrector
method. The one-dimensional solution seems to predict a smaller film
height than either the present or previous two-dimensional numerical
solution. In addition to neglecting any variation of the velocity across
the thickness of the film, the one-dimensional solution assumes a friction
factor based on the boundary layer thickness. These approximations lead to
results that are somewhat different than the two-dimensional solution
presented here. Looking at Fig. 5.3, it can be noticed that the surface
predlcted by the method proposed by Thomas et al. (1989) results’ in
penetrat1ons that are much hlgher than the solution presented here.
Comparing the present solution with the analytical results presented in
section VI, the present film height is found to be lower than that
predicted by the analytical solution. The analytical solution assumes a
uniform velocity profile across the film thickness, which is apparently not
.tke_ case in reallty The friction factor used for the final solution,
hovever, was the average friction factor obta1ned from the present
numerical solution. The above observations suggest that the free surface
flow of a thin film is two-dimensional in nature and the one-dimensional

results (analytical or numerical) can be used only as an approximation.
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The variation of the friction coefficient and the Nusselt number for
plane flow under zero gravity are presented in Fig. 5.4. The friction
coefficient decreases rapidly close to the entrance and gradually increases
thereafter all the way to the exit. The steep drop near the entrance is
associated with the development of the velocity profile from a uniform
entrance condition to a parabolic configuration downstream. By running the
problem with a parabolic entrance flow, it was found that the rapid drop
near the entrance mostly disappeared, but the friction coefficient after a
short distance from the entrance coincides with the plot presented here.
One may also notice that the friction coefficient is calculated in terms of
the average local velocity, which decreases gradually downstream.
Observing the numerically calculated values of the wall shear stress, it
was found that the shear stress decreases monotonically beginning from the
entrance. Near the entrance, the drop in shear stress is also very rapid.
It levels off as the flow moves downstream. Therefore, the rise in the
friction coefficient is due to the rapid deceleration of fluid velocity

[

downstream.

The Nusselt number for plane flow under zero gravity also shows a
rapid drop close to the entrance due to the development of the thermal
boundary layer. After a short distance, however, the Nusselt number
becomes nearly constant for the cases of heating and evaporation. As also
seen by previous investigators, the Nusselt number for heating is larger
than the Nusselt number for evaporation. A piot of the velocity vectors
for plane flow under zero gravity is shown in Fig. 5.5. It is observed
that the velocity profile is parabolic in nature and the magnitude of the

velocity decreases downstream.
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The results of radial flow under zero gravity is shown in Figs. 5.5
and 5.6 for Be; = 34. It can be seen that for the flow conditions
considered here the film height increases monotonically from the entrance.
However, as demonstrated by Rahman et al. (1989a), the film height may
increase or decrease in radial flow in contrast to plane flow where the
film height always increases. The film height is basically a function of
the inlet Reynolds number. The friction coefficient, in the case of radial
flow, is found to decrease first, attain a minimum, and increase thereafter
all the way to the exit. As discussed for the case of plane flow, the
decrease of the friction coefficient near the entrance is associated with
the development of the velocity profile from a uniform entrance condition.
The rise of the friction coefficient after the minimum in this case is
found to be much more rapid than that in plane flow. This is because the
flow velocity decreases more rapidly due to the spreading of the fluid as
it moves downstream. The Nusselt number for radial flow has basically the
same kind of behavior as in plane flow. The values of the Nusselt number
are different hoyever, particularly in the case of evaporation where there
is a loss of heat from;£he free surface. The vector plot in Fig. 5.5 shows
that in radial flow the velocity decreases more rapidly downstream, while
maintaining a parabolic structure across the film. It can be also noticed
from Fig; 5.5 thaf fhe .flow in a zero gfavity environment is
well- structured and no instability or separation is found to be present in

the flow field.

5.5.2 Film Flows Involving a Hydraulic Jump

A hydraulic jump is found to be present under some flow conditions

where a film flows along a horizontal or inclined surface under the
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presence of a gravitational body force. Two different flow regimes are
found to be present in this kind of flow: a supercritical flow before the
jump, and a subcritical flow after the jump. Depending on the Reynolds
number, the Ffoude number, and the length of the flow domain, the flow may
be only supercritical, only subcritical or mixed in the computational
domain. A mixed flow is the focus of our attention here, since a hydraulic
jump can occur only in that kind of flov. Both plane and radial hydraulic
jumps are considered in this section. The results for plane flow are

demonstrated in Figs. 5.7 and 5.8.

Figure 5.7 shows a plane hydraulic jump at Re = 355 and Frin = 9.0.
The Froude number at the outlet is assumed to be 1.0 to simulate a critical
outflow condition. A critical outflow is present when a film moves off of
the plate and experiences a free fall under the action of gravity. If the
plate is extended beyond the computational domain, the outflow is simply
subcritical and an appropriate Froude number needs to be specified.

As seeh in the figufe, the film height increases -slowly before the
jump, experiences a rapid rise at the jump front and thereafter decreases
gradually all the way to the exit. A wave-like structure is found to be
present at the commencement of the subcritical regime. This shape was
previously photographed by Francis and Minton (1984) for a hydraulic jump
~in a  vater ghannel, but could ‘not bg captured in previous numerical
investigations. Looking at thé veloéity vector plot in Fig. 5.8, it can be
noticed that the fluid separates from the plate due to the sudden rise of
the free surface at the jump location. Most of the mainstream flow tries to

orient itself along the free surface since a zero- shear condition exists on
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that surface. This results in a recirculating flow near the solid wall.
After a distance following the jump, the flow reattaches again to the
surface and eventually develops into a parabolic profile. The flow is also
seen to be parabolic in the supercritical regime before the jump. The
separation of the flow from the solid wall also results in a negative shear
stress near the jump location as seen in the plot of the friction
coefficient in Fig. 5.6. The friction coefficient decreases rapidly near
the entrance due to the development of the flov from a uniform entrance
condition to a parabolic structure. The separation and reattachment points
can be identified from this plot as the locations where the friction
coefficient is equal to zero. After the flow reattaches, the friction
coefficient increases slowly due to the reduction of the flow velocity due

to friction as the fluid moves downstream.

The plots of the Nusselt number are shown in Fig. 5.7 for the cases of
simple heating and evaporation. In both cases, the solid wall was assumed
to be at a uniform temperature higher than the ambient. In both cases,’the
Nusselt number decreases rapidly, éomes to a minimum and then increases

further downstream.

A hydraulic jump during the radial spread of fluid along a horizontal
plate is demonstrated in Figs. 5.9 and 5.10, where Rein = 50 and Frin =
11.0. As in the case of a hydraulic jump in plane flow, a critical outflow
condition is assumed. As seen in Fig. 5.9, the supercritical flow is
sustained for a short distance, where the film height increases faster than
the plane flow. At the jump, there is a rapid rise in fluid level, which‘

is followed by a gradual decrease in the subcritical region. The velocity
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of the fluid decreases downstream, due to the combined actions of radial
spreading and friction from the solid wall. There is a short separation
region as seen in both vector plots in Fig. 5.10 and the plot of friction
coefficient in Fig. 5.9. The profile is approximately parabolic in both
the supercritical flow before the jump and the subcritical flow following
the reattachment. The rapid drop of the Nusselt number and the friction
coefficient are associated with the rapid flow development near the
entrance. As seen in plane flow, the Nusselt number reaches a minimum in
the separated flow region. The Nusselt number rises slightly after the

flow reattaches to the surface.

5.6 CONCLUSIONS

The results of a new methodology for the computation of the free
surface flow of a thin liquid film is presented. The problems considered
are plane and radial flows involving a hydraulic jump and plane and radial
flovs in a zero-gravity environment when no jump can be present. The new
method computes the whole flow field as a single domain proﬂlem
irrespective of.iny regimé change iﬁ.the c&mbutational domain. This allows
the determination of the details of the flow field and the friction and
heat transfer behavior around a jump location. It was also found that the
new method yields results that are ﬁore accurate than any other existing

method for all of the problems considered here.

In both plane and radial flows where a hydraulic jump is present, it
was found that a distinct supercritical regime is present before the jump
and a subcritical regime exists downstream of it. The very rapid rise in

the fluid level at the jump location results in the separation of the flow
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from the solid wall and the development of a backward circulation. The
flow, however, reattachs to the surface after some downstream distance in
the subcritical region. The back flow was found to be stronger in plane
flow and at higher Reynolds numbers. The location of the sebaration and
reattachment can be determined from the plot of the friction coefficient,
which is negative in the recirculation region. The Nusselt number was

found to have a minimum in the jump region.

In the case of plane and radial flows in a zero gravity environment,
it was found that the variation of the film thickness is monotonic and no
separation of the flow is present. The friction coefficient decreases
rapidly close to the entrance, attains a minimum and thereafter increases
gradually downstream. The Nusselt number remains almost constant except

for the entrance region, and is higher for heating than for evaporation.
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Section VI

AKALYSIS OF THE FLUID FLOV AND HEAT TRANSFER IN A THIN
LIQUID FILM IN THE PRESENCE AND ABSENCE OF GRAVITY

6.1 SUMMARY
The hydrodynamic and thermal behavior of a thin liquid film flowing

over a solid horizontal surface is analyzed for both plane and radially
spreading flows. The situations where the gravitational force is
completely absent and where it is significant are analyzed separately
and their practical relevance to a micro-gravity environment is
discussed. In the presemce of gravity, in addition to Reynolds number,
the Froude number of the film is found to be an important parameter that
determines the supercritical and subcritical flow regimes and any
associated hydraulic jump. A closed-form solution is possible under
some flow situations, whereas others require numerical integration of
ordinary differential equations. The approximate analytical results are

found to compare well with the available two-dimensional numerical

solutions.
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6.2. INTRODUCTION

A thin film may be generated either by impingement of a jet on a
solid wall or by discharge of fluid through a slot from a pressurized
container. It may also occur during a melting or condensation process.
Such situations may occur in the Space Shuttle for inflow to a
propellant tank and in the absorber unit of a heat pump absorption
system. The'uhdérstanding of such flows in a micro-gravity environment
is essential for the optimal design of fluid flow and heat exchange

processes in a space vehicle.

The inviscid flow of a liquid jet impinging on a solid wall is a
classical hydrodynamics problem which is available in textbooks
(Batchelor (1967)). It is concerned with irrotational, incompressible
and inviscid flow, in which the effects of gravity and surface tension
are neglected. One of the major attractions of this type of approach is
that it can be handled using complex potential theory and therefore can

*

be treated analytically.

- In nature, however, viscous effects become important, particularly
when the thickness of the liquid layer becomes small. Also, gravity
cannot be neglected emtirely in most situations. Vatson (1964) analyzed
the fluid mechanics of thin films produced by the impingement of a
liquid jet on a flat horizontal“surface under the action of gravity. By
using the boundary layer approximations of the governing transport
equations, analytical solutions using a similarity transformation along
with the Pohlhausen integral method were derived. The analysis covered

the regions where the boundary layer thickness is less than the film
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height and where the film is totally engulfed by the boundary layer.
The possibility of a hydraulic jump in such a flow was also anticipated.
However, the analysis was applicable only to the supercritical flow
before the jump. The height of the jump was predicted for any given
location of the jump. The heat transfer counterpart of the impinging
jet problem was considered by Chaudhury (1964). The energy equation was
solved in closed form including the effects of viscous dissipation by
approximating the temperature profile with a fourth-order polynomial.
Nusselt numbers for different values of the Prandtl number were

presented.

The impingement of a liquid jet in a gravity-free environment was
presented by Labus and DeVitt (1978). They included the effects of
surface tension, but entirely neglected the viscous forces. From a
scaling analysis,.it was shown that for a large jet Reynolds number, the
flow can be approximated to be inviscid. Numerical solutions of the
governing  transport equations were obtained and compared with
experimental‘measuremehts; Three diétinct flow\patterns of the jet were
obtained which were classified in accordance with relative importance of

inertia and surface tension.

In the studies mentioned above, the investigators considered either
inviscid flow or viscous supe;c;i@ical flow up to the location of the
jump. The fluid flow in the viéinity of the jump or in the subcritical
region following the jump is also important from an engineering point of
view. Moreover, all of the studies mentioned above are concerned with

a thin film formed by impingement of a liquid jet. The driving
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mechanism of these flows are flow rate and jet diameter which are
characterized by jet Reynolds number. So, the findings in these studies
cannot be applied readily to a situation where the film is formed by
discharge from a pressurized container. This situation was considered
in recent studies by Rahman et al. (1989a, 1989c, 1989d). A systematic
numerical study of two-dimensional fluid flow and heat transfer in a
thin liquid film in both plane and radially spreading flows was
performed. The studies covered both zero and normal gravity
environments. In the absence of gravity, no jump was found and the flow
remained supercritical in the entire domain. In the presence of
gravity, a jump was found under some flow conditions. In all of these
studies, the flow field was computed numerically using a boundary-fitted
coordinate system where the irregular free surface of the film was taken
as one of the boundaries of the computation domain. The inertial,
viscous and pressure forces were identified to be dominant and the
surface tension was found to be negligible in most regions. The
computational methodology presented by Rahman et al. (1989a and 1989d)'
(descfibed in séctioﬁs' IITI and iV of this report) is termed the
‘pressure optimization method’ where the shape of the free surface was
represented by an algebraic equation vith two or more arbitrary
constants. The constants were optimized using an exhaustive search
which minimized the difference between the computed free surface and
ambient pressures. The method was found to be robust and was extremely
satisfactory for =zero-gravity flows. However, when a jump was present
in the computation domain, the pressure optimization method was unable
to compute the jump as a single-domain problem. The subcritical and

supercritical flows were computed separately and were matched at the
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jump interface preserving the conservation of mass, momentum and energy.

The two-dimensional numerical method presented by Rahman et al.
(1989¢c) (described in section V of this report) is termed ’porous wall
method’. In this method, the free surface was assumed to be a permeable
wall where fluid particles could cross this boundary depending on the
differencé in fluid and ambient pressures. The shape of the surface was
improved by successive iterations until the free surface conformed to a
streamline where no penetration occurred. This method proved to be
successful in handling the regions before and after the jump as a
single-domain problem. The details of the flow structure in the
vicinity of the jump were presented along with values of the skin

friction and heat transfer coefficients.

Even though the complete numerical solution for the flow field and
heat transfer coefficient are available to us, the need for a simple
systematic, analytic method to describe the flow is inevitable. The
numerical results are limitédv to tﬁe -flov parameters used for the
computation, and cannot be extended in general. MNoreover, an analytical
expression ~ is  easier to use and implement in addition to the
understanding of the limiting behavior of the flow. The present work is
intended to analyze both zero-gravity flows and the flows where gravity
is significant. The application of these results in a micro- gravity
situation will be examined. Unlike previous analytical studies, it will
cover both supercritical and subcritical regions and the jump connecting
the two domains. In addition to analyzing the flow field, the heat

transfer will be studied.
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6.3. EQUATIONS OF MOTION

The schematic of the problem under consideration is shown in Fig.
6.1. A thin liquid film is flowing adjacent to solid heated wall. Two
classes of flows are considered here.
(a) Plane flow: where the film moves in a two-dimensional fashion
along a plane horizontal wall.
(b) Axisymmetric radial flow: where the liquid is introduced at the

center of a circular horizontal plate and spreads out radially.

The z(r) axis is directed along the longitudinal  (radial)
difection, and y-axis is directed normal to the plate. The velocity
components in these two directions are ¥ and v, respectively. The
height of the free surface from the solid wall is denoted by & which

varies with the longitudinal (radial) location of the plate.

The equations governing the conservation of mass, momentum and

energy for an incompressible constant property flow are given by

-

7.V=0 (6.1)
2 - -

%% = - % Ip + W2V o+ g (6.2)
M.avir i (6.3)

fere we have also assumed that heat generation due to viscous

dissipation and pressure work are negligible, and there is no generation
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Fig. 6.1 Schematic of the physical problem
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—.
of heat or mass. The velocity vector YV can be resolved into components

as

-+ - -
V=vk+vj

The vectorial representation used in equations (6.1-6.3) is easier to
handle since it can be readily transformed to Cartesian or cylindrical

components as needed. The boundary conditions in component form are

given by

at y=0: v=w=20

{T =T, for isothermal wall (6.4)
'k§§ = q., for constant flux wall

dé
at y = 6: 5 = %, P=DPg Tg- 0

{T = T for evaporation (6.5)

qé =0, for adiabatic condition
at z=0o0rr=r, vV, T=T, (6.6)
at z=Lorr=rg,: gg = -pg, gg =0 (6.7)

{ g; = 0, for zero gravity
Fr = Frout’ for non-zero gravity

On the free surface, both streamline and stress-free conditions

have to be satisfied. The balance of normal stresses, in general,
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relate fluid pressure to the ambient pressure via surface tension and
other stresses. From a scaling analysis, it can be shown that (see
Rahman et al. (1989c)), for a reasonably large Veber number and flow
rate that is typical for these flows, these stress terms are found to be
an order of magnitude lower than the pressure. So, the surface tension
can be assumed to be negligible in most regions of the flow leading to

the p = Pe condition on the free surface.

Both plane and radial flows described above will be solved for zero
and normal gravity situations. In the following two sections, we will
analyze the flow using uniform and parabolic velocity distributions,
respectively. The former is more common in fluid flow literature
concerning a hydraulic jump or shock wave and will be carried out in
details. The latter section will improve on the analysis by using a
parabolic velocity distribution across the film, which is more

appropriate for laminar thin film flow.

6.4 ANALYSIS OF FLOV USING DNE—DIIENSIUNAE‘UNIFORI YELOCITY

Ve first consider the situation where the velocity variation across
the thickness of the film is neglected, and the film is assumed to
propagate downstream with its uniform average velocity. Let VW be the
average velocity of the film in the longitudinal (radial) direction of
the plate and { be the volumetric flow rate. In the case of plane flow,
Q is the volume flow rate per unit width. The continuity equation (6.1)

can be written as
_ A
§ = (2r )" &V (6.8)
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0, for plane system

vhere ) = { 1, for radial system

Integrating eqn. (6.2) across the thickness of the film, expressing
the resistance from the solid wall in terms of friction coefficient and

substituting eqn. (6.8) results in

d ¥ g0) =- A X (6.9)

This momentum equation must be solved along with eqn. (6.8) to
determine the flow field, and will be carried out in the following

subsections.

6.4.1 Flow Under Zero Gravity

For a steady flow under zero gravity, the governing equations (6.8

and 6.9) reduce to

§ = (2rr)A oV = constant L (6.10) '
Ce y2
LA 3 (6.11)

V&= 7%
Eliminating § from eqns. (6.10 and 6.11) gives
v2av=- 7% (2rr)) dr

Integrating this equation assuming a constant cg and substituting

the conditions at one location of the flow (i.e., at r = iy V= vin
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1 - . T.
in 1 in :
2 T+ !in

Solving for § results in the following relation

r. A
LI+ (1-4) () (6.13)
in in

_0101

r

Cc .
f in
vhere A = 5= U 152 (6.14)
* in

From equation (6.13) we may express the distribution of film height for

plane and radial flows.

For plane flow (1 = 0), the equation simplifies to

5§—=1+;i;;z— (6.15)
in in

This indicates that for a constant friction coefficient the film height
increases linearly with distance. This increase in film height is
because of the decrease in flow velocity due to the resistance from the
wall. Ve may also notice that for inviscid flow when no resistance is
exerted by the solid wall, the film height remains the same at all

downstream locations beginning from the entrance.
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In real flow situations, however, the friction .coefficient varies
along the plate.. Usually, near Ehe entrance the friction coefficient is
greater due to the rapid changes in the velocity profile as the boundary
layer develops beginning from the entrance plane. A good estimate of
the friction coefficient can be made using the Blasius solution (see
Kays and Crawford (1980)) for forced convective boundary layer adjacent

to a plate. This results in

e =288 for plane flow (6.16a)
Z
v
and ¢, = ——94§§3———, for radial flow (6.16b)
Ir-r.
in
v

However, unlike any other external flow, in a thin film the boundary
layer thicknmess is frequently of the order of the film height. So,
after some distance downstream, the viscous effects propagate all the
vay to the freé .surface. Then cs; can be better estimated from the
equation presented in a later section of this paper (equation 6.46).
The location. where one should switch over from one formulation to the
other may be estimated from the solution of the boundary layer thickness

for forced convection. The thickness of the momentum boundary layer is

given by
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g = 5.0 163 , for plane flow -

and
5.0 JV T"Tin/ |, for radial flow

As shown by Thomas et al. (1989), the two friction factor estimates
yield the same value at & = 1.81 6B. So, for continuity, one may use

equation (6.16) for §/6p > 1.81 and equation (6.46) for 6/6p < 1.81.

The one-dimensional analytical solution with the friction
coefficient described above has "been compared with the numerical
solution of Rahman et al. (1989a) in Fig. 6.2 for Re = 12.5, L = 0.03 m
and 5in = 0.000595 m for plane flow. Similar to the analytical
solution, a uniform inlet velocity has been assumed for the numerical
solution. The predicted film height distribution is found to be
somewhat higher than the two-dimensional numerical solution. A test run
with the friction coefficient reported in Rahman et al. (1989a) yielded
a solution almost coincident with the numerical film height. So, the
discrepancy is primarily due to approximations inherent with the
estimation of the friction coefficient. The Blasius solution is
perfectly valid for boundary layer flow where the free stream extends
through a large distance and no free surface is present. However, the
comparison is reasonable considering the approximations inherent in the

simple analytical formulation.

A plot of equation (6.13) for radial flow under zero gravity is

presented in Fig. 6.3 for different values of A. For A = 0.0, which
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corresponds to inviscid flow, the film height monotonically decreases
vith radial distance. This is quite expected since, in the absence of
any friction, the velocity of fluid particles will remain constant.
Therefore, the film height has to decrease with radius as more and more
area becomes available to the flow. In this plot we also notice that
vhen friction is present (A > 0), the film height may increase or
decrease depending on thebiaiue of A and the radial location. Also, for
a given radial location the value of the film height is more for a
larger value of A, since A quantifies the frictional resistance compared
to the inertial forces. For A = 0.2 and 0.4, the film height decreases
first, attains a minimum and then increases further downstream. The
location for minimum 6 can be determined by differentiating equation

(6.13) which gives

y1/2 (6.17)

(%;n)min =2/EyT-1& | (6.18)

From eqn. (6.17) we find that a minimum exists if A < 1/2. Otherwise,
the film height increases " continuously from the entrance as seen in
plots corresponding to 4 > 0.5. At A = 1.0, the film height increases

linearly with radius.
The analytical solution for a particular case of Rein = 404, 6in =

0.005 m, r;, = 0.05 m and Tout = 0.2 m is shown in Fig. 6.2 where it 1is

compared to the two-dimensional numerical solution given by Rahman et

220



al. (1989a). Here, we have also used the friction coefficient estimated
by equations (6.16) and (6.46). The results are very close except for
the fact that the analytical solution shows a minimum in the flow
domain. The minimum is indeed present as verified from the value of A.
The numerical solution could not accommodate this behavior since a

continuous hyperbolic curve was assumed to represent the free surface.

6.4.2 Flow in the presence of gravity

Vhen the gravitational body force is significant compared to other
existing forces, its effect should be included in the analysis. Unlike
a regular forced or natural convection flow in outer space, the effect
of gravity, even small, may be significant in a thin film flow since two
potential flow regimes, namely supercritical and subcritical may be
encountered. These regimes are characterized by the Froude number. The
transition of the flow from supercritical to subcritical is analogous to
the transition from supersonic to subsonic flow in gas dynamics, where
the Mach number determines which regime is present. The analysis
presented below uses the methodolog& commonly followed in the analysis
of high speed flow with friction (i.e., Fanno flow). The application of
these ideas to a thin film flow is entirely new and it enabled us to
combine both flow regimes (supercritical and subcritical) in a single
analysis whichv was not possible by previous investigators. Most
previous analytical studies assumed the film height to remain constant
in the subcritical region. Expressing eqns. (6.8) and (6.9) in terms of

the Froude number results in
Q= (2m)? g Fr 6572 (6.19)
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2 c
d 61~ By =- _§ Fr2 (6.20)

These equations will be solved for plane and radial flows in the

following subsections.

(a) Plane Flow
For plane flow A = 0. Then eqns. (6.19) and (6.20) can be combined
by eliminating the film height and non-dimensionalized assuming c. to be

locally uniform to give the equation
(1 - ) %%% - 3 pril/3 (6.21)

where

(6.22)

B = g3
o (v“/g)"'“Re

Integration of equation (6.21) gives

LI P BV

To evaluate the integration constant, the Froude number must be
specified at one location in the flow. Upon examining equation (6.21)
we notice that the equation is singular at Fr = 1, so a critical flow
situation is present at that location. This is analogous to a Mach
number of unity in a compressible flow. Let this critical location be

*
denoted by B1 . Then the solution can be written as
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23 L83 (6.23)

*
R1 - R1 ; % " % Fr

n

Equation (6.23) is a double-valued function as shown (in circles)
in Fig. 6.4. The two branches of the function represent subcritical or
supercritical flows where the Froude number is less than or greater than

unity, respectively.

Since two solutions exist at any location, the possibility of a
sudden jump from supercritical to subcritical flow exists. The opposite
is not true since that would violate the second law of thermodynamics.
The height of the film before and after the jump can be related by the

conservation of mass and momentum across the jump. This is given by

(l1+88 2 - 1] (6.24)

S
"
b —

where subscript 1 indicates conditions before the jump and subscript 2

indicates conditions. after the jump.

In Fig. 6.4, it can be observed that both subcritical and
supercritical flows move " towards the critical condition. In the
supercritical regime, the Froude number decreases downstrean, vhereas in
the subcritical regime it increases with distance. Since the Froude
number is inversely related to the film height, the film height is
expected to increase downstream in the supercriticai region and decrease
downstream in the subcritical region. A flow starting with Fr<1l will

follow the subcritical curve all the way to the exit. However, a flow
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starting with Fr>1 may follow the supercritical curve all the way to the
exit or may encounter a jump and transform to subcritical flow inside
the region under consideration. The location of the jump is determined

by the downstream condition of the flow.

(b) Axisymmetric Radial Flow
For radial flow, A =1, eqns. (6.16 and 6.17) may be transformed

into the following form

2
(1 _ Fr2) %g._lj; - g Fr11/3 _ FI{2 + Fr ’ (6-25)

where

Rl = S (6.26)
_g'_f (V2/g)1/3Re2/3

Analogous to plane flow, here the radial distance has been
non-dimensionalized using the local Reynolds number and friction
coefficient. The variation of friction coefficient with radial distance
has been assumed to be negligible. - A closed-form solution of equation
(6.25) is not possible, so a numerical integration was performed using
the Euler method. It can be noticed that the equation is singular at Fr
. = 1.. Therefore, the critical condition canmot be directly applied as a
boundary condition in the numerical solution. To avoid this
singularity, the equation can be expanded around the singular point and

the solution can be found at a short distance from the singular point
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from the lowest-order expansion. The numerical integration then can be
carried out beginning from a short distance away from the singular
point, where the solution is already known. The solution is shown in

Fig. 6.4.

It should be noted that the critical radius, Rl*, appears as a
parameter. For a given flow rate and inlet Froude number, the value of
Rl* depends on the inlet radius. A large Rl* indicates that the flow
starts up at a larger radial distance, where the effect of curvature is
smaller. This is quite evident from the plot since the result for Rl* =
100 coincides with the solution for the plane flow. The double-valued
nature of the solution is also present in radial flow which also
indicates the possibility of a hydraulic jump. The film height before
and after the radial jump can be related by the same equation as for

plane flow (equation 6.24).

6.4.3 Characteristic Behavior of the Flow

Since the equations of transportvfor the free surface flow of a
thin liquid film are somewhat similar to those for one-dimensional
compressible flow, it may be useful to analyze the characteristic

behavior of the flow.

The conservation equations in its time-dependent form can be

written as
agu 1 4 A
B—t-#'ja;(r E)=H
r
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where
s oV
AT R P

0
and | = | l
-.lp

vhere 7 1is the surface shear stress. These are two first-order partial

differential equations in t and r with two dependent variables, 6 and V.

These two equations may be linearized and written in the following

characteristic form:

Rt +CR =8
where
: )
Vo ghy g
R = 61 = Riemann invariants
C = vl ! = Vave speed
V- V8Yy

It can be seen that the first invariant ‘always propagates downstream
(i.e., C > 0). The second invariant, however, propagates downstream for
supercritical flow (Fr = V,//gd > 1) and propagates upstream for

subcritical flow (Fr < 1). This implies that both V and & must be
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prescribed upstream for solving supercritical flows while only one is

prescribed upstream and one downstream for solving subcritical flows.

6.4.4 Application of Results to Micro-Gravity

The zero-gravity thin film flow considered here can be attained
only in a complete absence of the gravitational body force. However, in
orbit the gravity is very small, but not precisely zero. Therefore, the
range of applicability of the results needs to be investigated. Looking

at plane flow results under zero gravity we notice that

°t
6:(2—)2+6in
This suggests a monotonic increase in the film height so long as Cs
remains positive. The flow decelerates due to friction and consequently
the film height increases. Since the major driving mechanism for this
flov is inertia, a film introduced with a finite velocity becomes very

slow after traveling a certain distance.

Vhen investigating the expression for the Froude number, it can be
noticed that even for a very small gravity force, where the inlet Froude
numbér tends to infinity, the Froude number may become on the order of
unity after some distance, since both the deceleration of flowv and the
increase of film height contribute to reducing the Froude number. The
situation here is analogous to hypersonic flow, which‘in the presence of
friction rapidly ceases to be hypersonic after traveling some distance.

Therefore, in a microgravity situation, the order of magnitude of the
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local Froude number is very important. Vhen the Froude number is
extremely large, like near the entrance, the zero gravity results may be
applicable. However, away from the entrance, one should resort to the
normal gravity results presented here and eventually a hydraulic‘ jump

must be encountered.

6.5 ANALYSIS OF FLOV AKD HEAT TRANSFER USING PARABOLIC VELOCITY

DISTRIBUTION

The one-dimensional analysis presented in the previous section
revealed many interesting features of the flow. However, the velocity
profile in reality is two-dimensional in nature because of the mno-slip
condition at the solid wall. As demonstrated by Rahman et al. (1989a),
the velocity profile is approximately parabolic in nature in most
regions of the flow. The temperature profile may also become parabolic

after the thermal boundary layer develops.

Ve assume the velocity component, w, and temperature, T, to have
the following general form where the boundary condition at the solid

wall and free surface are satisfied.

F=3n(t-3) (6.27)
T
7 =1+Bp+ Cr? (6.28)
W

vhere 5 is the dimensionless coordinate across the thickness of the

film. The constants B and C will be evaluated later in this section for

229



different thermal conditions considered here.

~

Once the velocity and temperature profiles are fixed, the other

flow quantities can be readily calculated and are given as follows

= (6.29)

3
t

KBT
W

q = - 5 (6.30)
KBT, _

Qe = - —5— (B + 2C) (6.31)

T, =T (1+B+0¢C) (6.32)

T, =T, (1+5/8B+9/20 C) (6.33)

In a thin film flow, the velocity across the thickness of the film
is much smaller than the velocity along the plate. Scaling the governing

equations (6.1-6.3) using the condition v << w gives

1 4 A ov
=0 6.34
;} ;53 (rfw) + biiT ( )
5w . aW - 1 (3 + 62‘1' (6 35)
W T VW = 'b- or I/—ﬁ—y-? .
Ldp ooy (6.36)

g ody
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I - (6.37)

Here A = 0 indicates plane flow and A = 1 denotes radial flow.

Integrating equation (6.36) we get,

p=p, + rg (67) (6.38)

where p_ is the pressure at the edge of the free surface. This
indicates that pressure across the thickness of the film is hydrostatic
in nature. Also, at zero gravity, p = Po In the external flow over a
flat surface, the ambient pressure usually remains constant. So, in a
gravity-free environment, the static pressure is expected to remain

constant everywhere in the flow field.

6.5.1 Plane Flow Under Zero Gravity

For plane flow under zero gravity equations (6.34) and (6.35) can
be integrated from 0 to § using the velocity profile given in equation
(6.27) and the no-slip condition at the solid wall and zero-shear
condition at the free surface. After using the definition of Reynolds

number, it results in the relationship

dé 2.5
dz = Ko (6.39)
Integrating this equation, one ohbLains
¢ 2.5 2 , )
- 1 EAC A (640
J. "'Re 7. (6.40)



For plane flow, the Reynolds number repains constant. Therefore,
the film height increases linearly beginning from the entrance location.
Ve also notice that in the limiting case of Re ~w, 0 = 6in everyvhere
in the flow field. This is quite expected since in an inviscid plane

flow, the film height remains constant.

Figure 6.2 shows a comparison of this solution with previous
numerical results of Rahman et al. (1989a). The analytical solution
tends to predict a somewhat higher film height than the numerical
solution, but lower than the solution predicted by assuming a uniform
one-dimensional velocity distribution. The assumption of a parabolic
velocity profile, even though not exact everywhere in the flow field,

produces a reasonable estimate of the film height distribution.

6.5.2 Radial Flow Under Zero Gravity

For radial flow under zero gravity, the integrated equation for the

conservation of momentum can be written as

2.5 )
- 52 - (6.41)

T

RS

Analogous to the plane flow case, we have used the continuity
equation, the boundary conditions at the solid wall and free surface and
the definition of Reynolds number to arrive at this relationship. Note

that this equation reduces to the plane flow equation as r = ». ¥e can

dé o . - : :
also observe that o= &in be positive or negative. So, the film height

r

ray increase or decrease oo the case ol radial flow, 1In contrast to

olane {flow, where a linear increase is encountered. The frictional

ORIGINAL PAGE IS
OF POOR QUALITY



resistance at the solid wall reduces the flow velocity and consequently
tends to increase the height. However, at the same time, the flow 1is
spreading radially with more are; available for the flow as the radius
increases. This same behavior was seen in the discussion of
one-dimensional analysis (Fig. 6.3), where the parameter ’A’ determined
the variation of film height downstream from the entrance. A’ is a
function of inlet Reynolds number along with inlet height and radius.

Note also that the Beynolds number does not remain constant in radial

flows and changes with location.

Integrating eqn. (6.41) gives

(6.42)

The location of the minimum film height may be calculated by

differentiating equation (6.42) with respect to r. This results in

3Reinhin 1 5 1/3
(r)for min § = Tin [ 5 (r. . gggf—ﬁf—) (6.43)
in in in

Ve can also notice that the minimum will exist when

Re. h.
in in

1A
By O

Tr.
mn

5

The results of the analvtical solution for radial flow under zers

gravity is also compared with previous numerical results of  Rahmun et
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al. (1989a) in Fig. 6.2. In this case, we can see a minimum inside the
flow domain confirming the observation from the one-dimensional
analytical solution using the vuniform the velocity profile. Both
analytical solutions are close to each other whereas the numerical

solution is slightly higher in most parts of the flow.

6.5.3 Plane Flow in the Presence of Gravity

For plane flow where the gravitational body force term is retained,
the governing equations of motion (6.34-6.35), can be integrated across
the thickness of the film using equation (6.38), the boundary
conditions, and the definition of Reynolds number, and can be

transformed to the equation

(- ped) G Bt (6.44)
where
R = 2 (6.45)
71/3
£

Here the radial coordinate B is normalized in terms of Reynolds number.
Note that the definition of R is very similar to the normalized radius
R1 used in the one-dimensional analysis using the uniform velocity
except that the friction coefficient C¢ appears in R1 whereas it does

Iy

not appear in R. From equation (6.29). the friction coefficient can be

.l . sy Ve -~ N 2
easily ecaleulated 1o he
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¢ = e . (6.46)

This friction coefficient is correct when the velocity profile is
parabolic across the thickness of the film, which obviously assumes that
viscous effects are extended all the way to the free surface. VWhen this
definition of Cs is assumed, R1 becomes the same as R. In the present
investigation we have tried to keep the one-dimensional analysis using
the uniform velocity somewhat more general where any known distribution

of the friction coefficient may be used.

From equation (6.44) it can be noticed that a critical condition in
the flow occurs at Fr = 0.913. Note that this value of Froude number is
different from the conventional critical Froude number of Fr = 1, which
is strictly valid for a one-dimensional flat velocity distribution. The
value of Froude number of 0.913 is therefore the '"weighted" value for
the parabolic profile. Integrating equation (6.44) with a boundary

*
condition of (R = B at Fr = 0.913) we can obtain the solution as

- 195 + 2R3 =, rr8/% o 3s m- v (6.47)
A plot of this equation is shown in Fig. 6.5 (as circles). Analogous to
the one-dimensional analysis, the solution is also found here to be
double wvalued in nature. The two stems of the curve denote the
supercritical and suberitical flow regimes. The possibility of a
hydraulic jump also exists here. which basically depends on the 1ncoming
troude uumber, length of  the plate and flow condition at the outet.

Ihe jump may be present only when the flow initially is supercritical,
ORIGINAL PAGE |s
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The ratio of the film height before and after the jump can be determined
from a mass and momentum balance at the jump, which, in this case, turnms

out to be

-1 { J 1+9.6Fr* - 1 (6.48)

SR

where the subscript 1 indicates conditions before the jump and the
subscript 2 indicates conditions after the jump. In comparing this
relationship with equation (6.24) for uniform flow only the coefficient

within the radical changes for the parabolic profile.

Plane flow in the presence of gravity is characterized by tvo
independent dimensionless groups, namely, the Froude number and Reynolds
number. Since the Reynolds number is lumped with other parameters in
the definition of R, to see its effects more clearly, the plane flow
solution is plotted again in Fig. 6.6 for different values of Reynolds
number using (z - z*)/(uz/g)1/3 as the abscissa. Note that for a small
value of Reynolds number, the supercritical solution cannot be sustained
for a large length of the plate. On the other hand, for the same
Reynolds number, the subcritical solution may be present for any length
of the plate. Also, the length for which a supercritical solution may
be present increases with Reynolds number. So, for a given length of

the plate and inlet Froude number, the length of the supercritical flow

regime is dircctly dependent on  the Reynolds number. For a  large
Reynolds number, the flow may be supercritical in the entire domion.
Vith a decrease of the Revnolds number, a jump 1s  expected 1o appear
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with a subcritical regime. 4s the Reynolds. number-is reduced further,
the jump may move all the way to the inlet, resulting in completely

subcritical flow.

The figure also shows that if the flow enters the control volume
with a higher Froude number, it may remain supercritical for a larger
distance. The effect of gravity can be also analyzed. For a given flow
rate and Froude number, (z - z*) is inversely proportional to (g)1/3.
So, for a smaller value of g, the length of the supercritical flow
regime 1is expected to be longer. In the limiting case of zero gravity,

a subcritical flow regime is not possible and the flow becomes entirely

supercritical.

The predicted film height is compared with the previous numerical
solution of Rahman et al. (1989a) for Re = 89, Fr, =86, Fr . = 1.0
and L =0.14 m in Fig. 6.7. The height in the supercritical region is
slightly over-predicted, whereas in the subcritical region, the height
becomes flatter than the numerical solution. In the numerical
computation of Rahman et al. (1989a), a critical outflow condition is
assumed to be present at the exit, whereas in the analytical solution

this condition was not imposed.

6.5.4 Radial Flow in the Presence of Gravitv

For radial flow in the presence of gravity, the equations of motion

(6.34-6.36) can be expressed as,
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3
5 2] dF 5F 3F 15 11/3
{G'Ff]ax.z='—-r—§n—r*r"f/~ | (6.49)

(6.50)

_ r
wvhere R = V2 173
[—-] Re
g

5/3

Here, we can also notice that a critical condition is arrived at Fr
- 0.913. This confirms that a critical condition in the flow depends on
the velocity profile used for the analysis. The double- valued nature of
the solution and the possibility of a hydraulic jump still exists. The
solution is presented in Fig. 6.5 for different values of R*. Analogous
to plane flow, the critical radius R* corresponds to Fr = 0.913. s
discussed before, a smaller value of R* indicates that the flow starts
up at a smaller radius where the effects of curvature are important.
This fact is quite evident in the figure. The curve for R* = 100
coincides with the plane flow solution. At this situation, the effects
of curvature is negligible. Also, at R* = 0.5 and 1, the Froude number
attains a minimum in the subcritical regime. This indicates that if a
jump happens before that radial location, the film height may still
increase in the subcritical region, attain a maximum and then diminish
further downstream. This phenomenon is not present in plane flow and at
flows with large values of R*, where the film height decreases
monotonically in the subcritical region. It can also be noticed that
equation (6.49) reduces to equation (6.44) as R + o. So, the plane flow

may be treated as a limiting case of radial flow where R - .

6§.5.5 Analvsis of Heat Transfer

The heat transfer behavior can be solved by integrating equation
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(6.37) with the substitution of equation (6.28) for the temperature

profile.

Different thermal boundary conditions are considered in the present
study. They are isothermal and uniform flux conditions at the solid
vall and evaporation and pure heating without evaporation on the free

surface. The heat transfer coefficient for these cases are defined as

q. / (T, - T,), for heating
LR L (6.51)

% (T, - Tsat)’ for evéporation

A general expression for the Nusselt number can be evaluated from

equations (6.30-6.33).

[ B
g 3 , for heating
* B + C
Nu = |8 20 (6.52)
B
. B+ C, for evaporation

A complete analytical solution is possible for the case of heating,
vhen the free surface is assumed to be adiabatic in nature. For this

*
case, Nu = 2.5 for both isothermal and uniform flux wall conditions.

*
Note that Nu is a function of heat transfer coefficient and film
height, both of which change with location on the plate. A comparison
of this result =ith the previeus numerical solution of BRahman et al.

(1989d) is shown in Fig. 6.8. For radial flow at zero gravity (Re =

[N
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404, Pr = 7, Tin © 0.05 m, Tout

1000 U/mz), the numerical Nusselt number starts at a higher value and

-— — — O -—
= 0.2 m, 5in = 0.005 m, Tin =20°C, q =

then approaches an asymptotic limit as the flow moves downstream. This
limiting value is somewhat lower that the analytical prediction. This
indicates that the true temperature profile is somewhat flatter than the
parabola assumed here. For plane flow in the presence of gravity (Re =
89, Fr, = 8.6, Fr . = 1.0, Pr=7,L=0.14m T; = 20°C, q, = 1000
V/mz), the subcritical and supercritical heat transfer coefficients
approach the analytically predicted value as the flow moves downstream

with the development of the temperature profile.

For an isothermally heated wall with evaporation on the free
surface, an expression for the Nusselt number can be derived by
integrating equation (6.37) using equation (6.28) for the temperature

profile and boundary conditions. The result is

* C
M =1 - Az) (6.53)
sat _
- ]
= 80 a (% dz _
where B(z) = 5= i ) T (6.54)

Here C, is the value of C at one location in the flow, where integration

should start.

*

The expressions for Muooare true both  for the cases wvhere the

gravity is finite and infinitesimally small. The actual heat transfer
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coefficient, however, will be different because of different

distributions in the film height.

6.6 CONCLUSIONS

A systematic analysis of thin film flows in a zero gravity and
non- zero gravity emvironment is performed and their implications in a
real flow problem under micro-gravity conditions 1is discussed. The
analysis is carried out in two parts. First, the hydrodynamics of the
flow is studied for uniform one-dimensional velocity with any given
friction factor. Next, the flow field and heat transfer coefficient are

determined using the Pohlhausen integral method.

It is found that in the complete absence of gravity, the flow 1s
supercritical, where even for a relatively small, but not negligible
gravity, two potential flow regimes - supercritical and subcritical may
be present. The two regimes are separated by a jump where large changes
of film height take place. In the presence of friction, both
supercritical and subcritical flows move towards a critical condition.
The flov regime is characterized by the Froude number, whereas the
Reynolds number indicates the relative importance of the inertial and

viscous effects.

For plane flow, it 1is found that in the absence of gravity, the
film height increases linearly with distance. Vhen gravity is present,
the film height 1increases monotonically in the supercritical region.

cncounters a  juap  amd  then  decreases further downsuress  an the

subcritical region. The heat transfer coefficient in thrs situation 1s
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*
characterized by Nu = 2.5, both for isothermal and uniformly heated

walls with no evaboration from the free surface.

For radial flow it is found that in addition to the Froude and
Reynolds numbers, the inlet radius is an important parameter, which
carries the effects of curvature in the flow. At large values of the
inlet radius, a plane flow situation is approached. Here, in the
presence of gravity, the film height may increase or decrease depending
on the flow rate, radial location and Froude number. The comparison of
the results with previous numerical solutions shows reasonably good
promise that the analytical method presented here can act as a useful
tool to easily obtain approximate results for any given flow situation

in a normal gravity or microgravity environment.
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Section VII

CONPARISON OF THEORETICAL PREDICTION AND EIPERINENTAL DATA

7.1 SUMMARY

The theoretical models developed in earlier sectioms are improved and
a systematic procedure to compute the free surface flow of a thin liquid
film is suggested. The solutions for axisymmetric radial flow on a
stationary horizontal disk and that when the disk is rotating around its
axis are presented. The theoretical predictions are compared with the
experimental data presented in Section II of this report. The details of
the flow field are also presented for the stationary disk, which shows flow
separation near the location of the jump. The effects of surface tension
are found to be important near the outer edge of the disk where the fluid
experiences a free fall. At other locations, the surface tension is
negligible. For a rotating disk, the frictional resistance in the angular

direction is found to be as important as that in the radial direction.
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7.2  INTRODUCTION ]

The appropfiate design of a rotating absorber unit for a heat pump, a
rotating condenser or evaporator, or the proper method of spin coating
deposition on a metal surface all require an understanding of thin film
flows over a horizontal rotating surface. ¥oreover, the impingement of a
liquid jet on a solid wall that leads to the formation of a thin film is
found in many engineering devices. These free surface flows are sometimes
associated with a hydraulic jump where two different flow regimes are
encountered at the upstream and downstream sides of the jump. The flow
structure around a hydraulic jump is usually complicated in nature, the

understanding of which is essential from both theoretical and practical

points of view.

The radial spreading of a liquid jet impinging on a flat horizontal
surface was studied by Vatson (1964). Both analytical and experimental
studies of laminar and turbulent flows were made. A hydraulic jump was
found to be present under some flow conditions. The analysis covered the
supercritical region before the jump vhere four different flow regimes were
identified and analyzed using the Pohlhausen integral method and a
similarity.pransfqrmation. In the subcritical region, the film height was
assumed to be constant. For a given location of the jump, the subcritical

height could be also predicted.

The heat transfer to a thin film formed by an impinging liquid jet was
considered by Chaudhury (1964). His analysis basically followed the ideas
introduced by Watson (1964) except that the energy equation was solved. In

the region away from the impingement location where a similarity solution
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of the momentum equation was possible, the energy equation was solved in a
closed form including the effects of viscou; dissipation. An approximate
solution for the simultaneousiy developing hydrodynamic and thermal
boundary layers were also obtained using the integral method where the

temperature profile was approximated by a fourth- order polynomial. Nusselt

numbers for different values of the Prandtl number were presented for both

the regions.

The laminar flow of a thin film adjacent to a horizontal rotating
surface was studied by Rauscher et al. (1973). An asymptotic expansion
technique was used to develop -an approximate solution where the radial
spread of fluid was perturbed to determine the effects of convection,
Coriolis acceleration, radial diffusion, surface curvature and surface

tension. The physical significance of these higher-order effects were also

discussed.

The transient behavior of the film when the rotation is started from
an initial stationary condition was examined by Higgins (1986). Both low
and high Reynolds number flows were considered. An asymptotic expansion
technique was used to develop analytical solutions valid for short and long
time scaleé; His results were valid only when the thickness of the
boundary layer is small compared to that of the film. The thin film flow
of a non-Newtonian fluid adjacent to a rotating surface was considered 1in
the study of Matsumoto et al. (1982). An integral method was used where
the velocity profile across the thickness of the film was approximated by a

polynomial.
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The condensation of a saturated vapor onto a rotating horizontal
surface was inveétigated by Sparrow and Gregg (1959). The governing
momentum and energy equations were simplified to a set of ordinary
differential equations by using a similarity transformation. The equations
were then integrated numerically to predict the condensate layer thickness
and heat transfer coefficient along with the temperature and velocity
profiles. The evaporation of a thin film on a rotating surface was studied
by Butuzov and Rifert (1973). Closed-form solutions were derived for the

film thickness and heat transfer coefficient.

In all the studies mentioned above, the investigators have developed
analytical models for the phenomenon of the radial spread of fluid with or
without rotation. ¥ost of these models are for a thin film generated by
the impingement of a liquid jet which 1is characterized by the jet velocity
and its diameter. Therefore, they cannot be readily applied to a situation
vhere the film is generated by a discharge from a pressurized container in
the center of the disk. MNoreover, none of these models handle very well
the hydraulic jump associated with these flows. The studies by Watson
(1964) and Chaudhury (1964) analyze in detail the supercritical region
before the jump, but make a simple assumption that the film height after
the jump remains constant, which is not true in reality. A systematic
investigation of thin film flows discharged from a pressurized container in
the center of the disk has been carried out recently by Thomas et al.
(1989) (described in section I of this report), Rahman et al. (1989a)
(described in section III of this report) and Rahman et al. (1989c)
(described in section ¥ of this report). These studies considered both

supercritical and subcritical flow regimes and used numerical techniques to
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develop computational procedures for thin fil@ flows.

Thomas et al. (1989) appfﬁximated the flow to be one-dimensional in
nature by neglecting any variation of velocity across the thickness of the
film. The continuity and momentum equations were integrated across the
thin film to develop a single equation for the film velocity. The
resistance to the flow due to wall shear stress was expressed in terms of a
friction coefficient. Suitable expressions for the friction coefficient
were developed for regions close to the entrance where the thickness of the
momentum boundary layer is small pompared to film thickness, and for
regions far away from the entrance where viscous effects propagate all of
the way across the film. These regions were matched where the two friction
coefficients yielded the same results. The equation of motion was solved
numerically using the ¥acCormack predictor-corrector method. Results were
obtained for both stationary and rotating disks for a number of inlet
Reynolds, Froude and Rossby numbers. In the presence of the jump, the
outlet Froude number was always assumed to be unity to simulate a situation
where the fluid experiencés a free fall over the edge of the disk due to
gravity. Tt was found that jump moves downstream and may get washed away
vith an increase in the flow rate, angular velocity and inlet Froude

number.

The studies by Rahman et al. (1989a and 1989¢) solved the flow field
numerically using a boundary- fitted coordinate system. No assumption
regarding the velocity variation or friction coefficient were required.
The studies, however, covered only the case of a stationary disk. Since

the height of the free surface is dependent on the flow conditions and 1s
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not known ahead of time, an iterative procedqfe had to be used to determine
the correct location of the free surface. The method presented by Rahman
et al. (1989a2) in section III ofathis report is termed as the ’pressure
optimization method’ . In this method, the shape of the free surface was
assumed to be described by an algebraic equation with two or more arbitrary
constants. The constants were optimized using an exhaustive search
fechnique that minimized the difference between the computed free surface
and ambient pressures. The method was found to be very satisfactory for
zero-gravity flows, which was the primary emphasis in that paper. However,
in the presence of gravity when a jump existed in the flow field, the
method required the supercritical and subcritical flows to be computed
separately, and the solutions were matched at the location of the jump.
Even though this procedure yielded correct results in regions away from the
jump, it could not account for the details of the flow field in the
vicinity of the jump. This drawback was removed in the subsequent study by

Rahman et al. (1989c).

The method developed by BRahman et al. (1989c) in section V of this
report is termed as the ’porous wall method’. In this method, the free
surface was assumed to0 be a permeable wall through which fluid particles
may leave or enter the control volume depending on the difference between
the fluid and ambient pressure€s. The shape of the surface was corrected 1n
successive iterations until the free surface conformed to a streamline and
the penetration through the surface reduced to zero. This method computed
the whole flow field as a single domain preserving the details of the flow
in the jump region. The computed flow field, friction and heat transfer

coefficients were reported in that paper.
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The purpose of the present investigation 1s ’twofold. First, to
compute the flow field using the methods de;eloped by Thomas et al. (1989)
and Rahman et al. (1989a and .1989c) for the experimental conditions
reported in Section II of this report. The theoretical and experimental
results can then be compared to find the merits and drawbacks of the
different prediction methods. The second objective of this work is to
improve the existing theoretical models and to suggest a systematic
computational procedure for thin film flows adjacent to 3 stationary or

rotating disk.

7.3 BQUATIONS OF MOTION

The body-fitted coordinate system used for the two-dimensional
numerical computation is shown in Fig. 7.1. The local coordinates are
directed along lines connecting the centers of the adjacent grid cells.
The z-axis is directed along the direction of radial spread, i.e., the main
direction of flow. The y-axis is directed across the thickness of the
film. The height of the free surface from the solid wall is denoted by 4,

vhich varies with radial location on the plate.

The equations governing the conservation of mass and momentum in a

thin liquid layer involving a Newtonian, constant-property fluid can be

written as
v.-V=0 (7.1)
DV 1 27
D_E:-EVp+uV V+g (7.2)
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The boundary conditions are given by:

[

at entrance: V=V, §= 6., (7.3)
at exit: V= vout’ § = 50ut’ for stationary disk
-
g% - 0, for rotating disk (7.4)
L p=1rg (6-7)

2t solid vall: ; _ { 2, for statipnary disk (1.5)

Vo for rotating disk

at free surface: =o = 0, p=20 (7.6)

Here n is the coordinate directed normal to the surface under
consideration. The p =0 condition at the free surface is arrived at from
a balance of normal stresses where the effects of surface tension and other
stresses except for pressure is neglected. This is valid for a thin {film

flow with large values of the Reynolds and Veber numbers.

7.4 Flow on a Stationary Disk

The situation where the disk is stationary with fluid emanating at the
center and spreading out uniformly in the radial direction is considered
first. Four sets of experimental data with flow rates ranging from 7 to 15
1pn were taken where the film height was measured in the supercritical and

ir d

subcritical regions. The neasured data for 7 lpm and 11 lpm are plotted 1in
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Figs. 7.2 and 7.3, respectively, vhere it 1is _compared with the one-
dimensional numerical solution by Thomas et al. (1989). It can be noticed
that the experimental data cémpare reasonably well with the numerical
solution in the supercritical region, but does not compare well 1in the
subcritical region. The height of the jump is also not correctly predicted.
In the numerical algorithm proposed by Thomas et al. (1989), the outflow
from the disk was simulated by assigning a Fr = 1 condition at that
location. When the fluid flows out of the disk and experiences a free fall,
the subcritical flow has to transform to supercritical flow, and a critical
condition should exist somewhere.in the vicinity of the outlet. However,
assigning Fr = 1 at the outlet does not seem to be adequate in this case.
From the figure, it can be also noticed that the measured height is higher
than the critical height, which suggests that the film is held up by some
sort of external force. It can be recalled here that in all previous
computations, the surface tension was neglected in all regions of the flow,

which may not be correct near the exit since an appreciable curvature of

the free surface is encountered due to the rapid turning of the flow.

In the presence of surface tension, the fluid and ambient pressures

can be related by the equation

20 (7.7)

where R is the radius of curvature. If the pressure 1S assumed to be

hydrostatic 1n nature, this equation can be expressed in terms of film

height, as
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5 =6 o ?ii- , (7.8)
o8

where 6e is the actual film height at the exit, and 6* is the critical
height predicted Dby the Fr = 1 condition at the exit. To solve this
equation, an estimate for ﬁ is required, since that is unknown in general.
In the case of the stationary disk, we may assume that the thickness of the
film remains approximately constant in the region where the flow changes
its direction from horizontal to vertical. This means that the radius of
curvature remains of the same order as the film height. Substituting ﬁ =

6e and solving for it, we obtain

5* + Jé + 22
6y = 5 L8 (7.9)

* 2/3
where § = ————Jl————%
21r0utJ g

Equation (7.9), even though quite approximate in nature, seems to give
a good estimate of f£ilm height at the exit. This is demonstrated in Table
7.1, where the height calculated by equation (7.9) is compared with the
measured héight at the last data point from the exit where measurement was
reliable. The deviation 1is within 10%. From Table 7.1, it can also be
noticed that the deviation has a sign change and increases with the flow
rate. Vhen the flow rate is increased, the fluid particles move over the
disk with a larger amount of inertia and get swept away further before
experiencing the falling motion due to gravity. This increases the radius

of curvature of the free surface and thereby decreases the effects of

259



Flow rate
(1pm)

11
13

Table 7.1: Comparison of Calcula
Height at

Measured Height
(mm)

4.4196

4.318
4.369
4.216

ted and Measured

Qutlet for a Stationary-Disk

Calculated Height
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(mm)

4.3378
4.4357
4.5284
4.617

Film

Deviation
(%)
-1.85
2.73
3.65
9.51



surface tension. So, using R =&, overestimates the film height near the
exit. The opposite is true for a smaller flow rate. The estimate,

however, is reasonable considering the simplicity of the formulation.

The computed result with 6 = 5e at the exit with the same inlet
condition as the experiment is shown in Figs. 7.2 and 7.3 for flow rates of
7 and 11 lpm, respectively. Now, the subcritical film height compares
reasonably well with the experimental data. In the supercritical region,
the height remains the same as that computed by the original procedure of
Thomas et al. (1989). The location of the jump moves further upstream for
both flow rates. The measured location of the jump is found to be somewhere
in between the two numerical results. It can also be noticed that the
one-dimensional solution simulates the jump as a sudden rise of film height
that occurs across a single grid cell. In reality, the jump occurs
somewhat more gradually, which in our experiment spanned over a length of
6-25 mm. Even with these drawbacks, the one-dimensional numerical solution
developed by Thomas et al. (1989) may be used for a quick estimate of the
subcritical and supercritical film height distribution if the modification

of the outlet boundary condition proposed here is incorporated.

The experimental data for 7, 9, and 11 lpm are compared with the
two-dimensional numerical solutions of Rahman et al. (1989a and 1989c) in
Figs. 7.4, 7.3, and 7.6, respectively. Here, we have used the first and
last data point as the inlet and outlet conditions for the numerical
computation. The \computed results by the method of Thomas et al. (1989)
are also shown here for a relative compirison. In the two-dimensional

numerical solution by Rahman et al. (1989a, 1989c), the velocity profile at
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the entrance is assumed to be parabolic in nature with a maximum at the
free surface. " This condition is not present in our experiment since the
flow comes through a slot before being discharged onto the disk. So, at
the entrance the maximum is expected to be somewhere halfway between the
solid walls. After a short distance from the entrance, the flow 1is
expected to evolve to a parabolic profile with the maximum velocity at the
free surface, since the no-slip condition exists om the solid wall and the
zero- shear condition is present on the free surface. Therefore, using the
first measured data point as the entrance instead of the physical inlet is
more justified for comparison with the two-dimensional numerical solution.
Also, analogous to the one-dimensional solution of Thomas et al. (1989),
Rahman et al. (1989a and 1989c) used Fr =1 to simulate the outflow
condition from the disk. As we have already discussed, this 1is erroneous
and the height (or Froude number) at the exit needs to be estimated taking
into account the surface temsion effects. Equation (7.9) can be applied
for this purpose. Since the effects of the surface tension at the outflow
location have been already demonstrated in Figs. 7.1-7.2, in these

computations the actual experimental measurement has also been used for the

exit boundary to eliminate any error associated with the theoretical

estimate.

It can be seen that the ’pressure optimization method’ developed by
Rahman et al. (1989a) predicts the correct location of the jump. The film
height in the supercritical and subcritical regimes are also very vell
predicted. In this method, the supercritical and subcritical flows are
computed separately by strictly imposing the inlet and outlet boundary

conditions, respectively. The solutions are then matched at the jump
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location by preserving the conservation of mass and momentum at the jump.
In the originai method, the jump happens instantly across one grid cell.
In the solution presented here, ;e have modified it to allow the jump to
form across a number of cells that result in a minimum overall pressure
difference between the fluid and the ambient. The location for the
initiation of the jump was kept the same and only cells at the downstream
side were added to it. The quantity optimized vas gstill the RMS error in
the free surface pressure normalized by the initial total head (see Rahman
et al., 1989a). In this process, both the supercritical and subcritical
regimes vere considered together along with the jump region. The solutions
plotted in Figs. 7.4- 7.6 correspond to the slope of the jump that resulted
in the minimum RHMS error of the free surface pressure. The figures
indicate that the two-dimensional solution predicts the location and slope
of the jump somewhat better than the corresponding one-dimensional
solution. So far as the location of the jump is concerned, the
one-dimensional solution appears to be good for 7 lpm, but it predicts the

jump at a radial location closer to the inlet for both 9 and 11 lpm.

Even though the modified ’pressure optimization method’ gives the
gross structure of the jump, the details of the free surface in the jump
region can only be obtained by using the ’porous wall method’ developed by
Rahman et al. (1989c). In this method, the local free surface height 1is
changed in each iteration depending on the local velocities at the free
surface. Moreover, a global variation is taken into account by minimizing
the overall rate of penetration through the free surface. The surface
evolves by itself as the iteration proceeds and the solution corresponding

to the minimum rate of penctration is taken to be final. It can be noted
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in Figs. 7.4-7.6 that the film height predicted by the ’porous wall method’
most closely matches the experimental data, particularly in the jump
region. As mentioned by Rahman et al. (1989c), the ’porous wall method’ is
quite sensitive to the initial guess of the free surface height
distribution and has rather slow convergence characteristics. So, the best
prediction approach one can follow is to use the ’pressure optimization
method’ first to get the gross structure of the jump, and refine that

prediction using the ’porous wall method’.

The details of the flow field for the flow rate of 11 lpm is shown in
Fig. 7.7. It can be noticed that the velocity profile is parabolic at
r - 0.108 m. This location corresponds to the supercritical region. Here
the flow is well-structured with the maximum velocity at the free surface.
This is the typical velocity profile in most of the supercritical region.
However, as the jump is approached and the film height increases, the free
surface tends to experience more and more force due to the gravitational
head, and the location of the maximum velocity moves down from the free
surface to somewhat inside the film. This can be seen in the vector plot
centered around r = 0.153 m, where the jump has already started. After
initiation of the jump the flow also loses inertia rapidly due to the
sudden change in film height. Flow separation is encountered both at the
solid wall and on the free surface, which can be noticed in both plots
corresponding to r = 0.153 and r = 0.167 m. The separation from the solid
wall is due to frictional resistance and was previously seen in the
experimental work of Nakovyakov et al. (1978) and the numerical computation
of Rahman et al. (1989c). Nakovyakov (1978) actually measured the wall

shear stress for a circular hydraulic jump of a thin liquid film and found
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r=0.108m

> : 2.2222E-B1 m/s.

y

Fig. 7.7

(How rate

Velocity vectors for thin film flow adjacent to a stationary disk
11 lpm)
268



it to be negative for a short distance downstream from the location of the
jump. Rahman et al. (1989c) reported a numerically computed friction
coefficient that was negative 1in the vicinity of the jump. The flow
reattaches to the surface after some distance in the subcritical region.
The separation of the flow at the free surface is due to the gravitational
pressure gradient and 1is more commonly termed as a ’surface roller’ in the
hydraulics literature (Rajaratnam (1967), for example). This roller was
not observed previously in other investigations on thin film flows. The
reason was that a jump in a thin film flow was believed to be an
instantaneous phenomenon and was modeled accordingly, so the details of the
flow structure at the jump could not be captured. This phenomenon can be
seen when the jump is allowed to develop gradually over a distance. In
Fig. 7.7, it can also be noticed that the surface roller starts up at an
earlier location and covers a larger region than the separation eddy near
the solid wall. As seen in Fig. 7.6, the length of the subcritical region
for this flow rate is quite small. If sufficient length is allowed, the
flow again develops to a regular parabolic structure with the zero velocity

at the solid wall and the maximum velocity at the free surface.

7.5 Flow on a Rotating Disk

Vhen the disk rotates about its axis, in addition to inertial,
gravitational and viscous forces, the centrifugal and Coriolis forces shape
the flow structure as it moves downstream. For an appreciable rotational
velocity (as is considered 1in our experiment), the subcritical flow region
is swept out from the disk and no jump can be present. It may be recalled
here that the length of the subcritical flow regime was small even with a

stationary disk. If a disk of much larger diameter was considered, a jump
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could be possible at a smaller rate of rotation.

+

Ve first consider the data corresponding to an intermediate flow rate
and angular velocity (11 lpm, 100 rpm), which are plotted in Fig. 7.8 along
with the theoretical prediction of Thomas et al. (1989). It can be noticed
that the numerically determined film height is reasonable at smaller radii,
but seems to deviate from the measurement at larger radii. Both the
experimental measurements and the theoretical computation show that the
film height increases downstream, attains a peak and then decreases. The
experimental data also shows an increment of height near the exit. This
increment is believed to be caused by the surface tension as discussed
earlier in this section. The effect of surface tension is smaller for a
rotating disk than that for a stationary disk since the flow moves over the
disk with a higher velocity and results in a larger radius of curvature.
In the numerical solution of Thomas et al. (1989), the flow was assumed to
be strictly radial in nature with a superimposed solid-body rotation. The
resistance to the flow due to friction was taken to be the resistance in
the radial direction. In the azimuthal direction, the velocity remained
constant all across the thickness of the film with no resistance from the
solid wvall. In reality, however, the velocity is expected to change due to
the finite viscosity of the fluid, so there will be frictional resistance

from the wall in the azimuthal direction.

To account for the frictional resistance due to the angular velocity,

ve may define the total shear stress as
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w16 *r - - (7.10)

re 7
Here r

parabolic solution given by Thomas et al. (1989). T4 can be estimated from

Cy (1/2 p V2), where c, can be calculated by using the Blasius or

the exact solution of laminar flow adjacent to a rotating disk in .an

infinite extent of fluid. As given by Schlichting (1979),
o = 0.6 pr y1/2 u3/2 (7.11)

Using 7 as the shear stress at the.solid wall in the formulation by Thomas
et al. (1989), the film height distribution was calculated and is shown in
Fig. 7.8. The predicted film height compares reasonably well with the
experimental data. So, at an intermediate flow rate, both components of

frictional resistance are important and one cannot be entirely neglected in

favor of the other.

Figures 7.9-7.11 show the comparison of the numerical results with the
experimental data for other rotational speeds tested in the experiment.
For a smaller rate of rotation (55 rpm), it can be seen that the modified
numerical solution predicts the experimental data except for the region
close to the outlet where surface tension is large. The original procedure
of Thomas et al. (1989) somewhat underestimates the film height in the
region away from the center where centrifugal force becomes large. For
large rotational rates (200 rpm and 300 rpm), however, the method of Thomas
et al. (1989) appears to be reasonably satisfactory and predicts the trend

of the experimental data better. The assumption of solid- body rotation
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inherent in the formulation of Thomas et al. (1989) become more appropriate
at smaller valués of the Rossby‘number, i.e., at higher rates of rotation,
so the trend seen here may be expected. However, we should also keep in
mind the limitations of a simple one-dimensional numerical solution.. As
seen in the experiment, waves appear on the surface and become more intense
at a higher spin rates. The turbulence may also be triggered at a higher
rate of flow or rotation. A two-dimensional solution with rotation may

address some of these issues, which is beyond the scope of the present

paper.

7.6 CONCLUSIONS

The experimental data were compared with the existing numerical
solutions of radially spreading thin film flows adjacent to a stationary or
rotating disk. Some of the drawbacks of the existing numerical methods are
pointed out and corrected. The detailed structure of the flow for a

stationary disk is also computed and discussed.

It was found that surface tension is important at the outer edge of
the disk. For a stationary disk, a simple model for estimating film height
at this location is proposed. At other locations in the flow, the surface
tension can be neglected. For a stationary disk, the one-dimensional
numerical method of Thomas et al. (1989) or the two-dimensional methods of
Rahman et al. (1989a and 1989c) should always be applied with the correctly
estimated outlet Froude number, instead of using Fr =1 to simulate a

critical (free falling) outflow condition.

In the case of a rotating disk, the frictional resistance due to
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angular velocity was found to be important. At a smaller rate of rotation,
the resultant frictional resistance was found to be more adequate to

predict the film height than using only the radial component.

The increment in film height at the jump was found to be gradual
spanning over a number of grid cells. In the two-dimensional ’pressure
opfimization method’ after determining the location of the jump, an
additional procedure for adjusting the slope of the jump may be included to
arrive at a better structure of the free surface. The two-dimensional
‘porous wall method’ given by Rahman et al. (1989b) can be used as it is
except for imposing the correct Froude number at the outlet. It was also
found that recirculating flow is present in the vicinity of the jump, both
at the solid wall and on the free surface. The separation of flov at the
solid wall is due to the viscous resistance exerted by the wall that
overcomes inertia when the film height rises. The separation on the free

surface is due to the adverse gravitational pressure gradient.
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Appendix A: EQUIPMENT SPECIFICATIONS

L3

The equipment for the rotating disk unit is divided into four

subsystems for the description of the components:

1. Rotating disk assembly
2. Liquid film height measurement system
3. Heat transfer measurement system

4. Liquid circulation system

[

. Rotating disk assembly

a) Rotating disk
Material: 6061 aluminum
Diameter: 406.4 mm
Thickness: 6.35 mm
Surface finish: 3.81 x 1074 mn

Perpendicularity to centerline of spindle: 2.5 x 10'3 mm

Flatness: 2.5 x 1()'3 mm

b) Collar
Material: 316 stainless steel
Quter diameter: 102 mm

Perpendicularity to centerline of spindle: 6.0 x 1074 mm
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c)

d)

e)

Shim . ]

Material: 316 stainless steel shim stock

Thickness: 0.673 mm

Spindle and motor

e Yhitnon model 699-0080-000 "piggyback" spindle/motor assembly

Spindle bearings: ABEC §#7 angular contact ball bearings

Spindle shaft: 440 stainless steel hardened to 50-55 Rockwell "c"
except at shaft extension which will be 38-42 Rockwell "C" due to
thin cross section

Electric motor: 0.5 HP at 900 RPN with an input of 230/460 V, 3
phase, 60 Hz (0.75 A @ 460 V)

Driver and driven pulleys are interchanged to obtain speed range
change. A frequency inverter will be used to vary the speed within
each speed range.

Frequency inverter: 4.5 A @ 460 V

Lov speed range: 55 to 374 RPN

High speed range: 423 to 1987 RPN

Radial encoder and speedometer

e Airpax solid 60-tooth gear, magnetic pickup, and digital display

Accuracy: #1 RPY over speed range of 55 to 1987 RPN
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2. Liquid film height measurement system .

.

a) Non-contact capacitance sensor
e XTI model ASP-100-CTA
Accuracy: +0.002 mm

Resolution: +0.002 mm

b) Data logging system
e Fluke model 22804 Data Logger

¢) Digital micrometer
e Microcode model 9598
Accuracy: #0.002 mm

Resolution: 20.002 mm

d) Precision slide
o Nicroslides model A-6166-LC crossed roller bearing slide assembly

Accuracy: Run-out over 130 mm = #2.6 x 10’3 mm
3. Heat transfer measurement system

a) Etched foil heater
e Minco mica heater
Outer diameter: 356 mm
Inner diameter: 102 mm
Thickness: 0.635 mm

(6) - 3.18 mm holes for thermocouples
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Maximum operating temperature: 100°C .
Electrical specifications: 500 V, 41.67 i, 12 A, 6000 ¥

Maximum heat flux: 6.6 V/cm2

Ceramic insulation
e Aremco 502-600 machinable ceramic
Naximum operating temperature: 590°C

Thermal conductivity: 0.15 W/(m-K)

Thermocouples
e Type "T" copper-constantan
Maximum useful range: -200 to 350°C

. 0
Maximum error over range: 0.5°C

Digital thermometer
e Fluke model 2280A Data Logger

Thermocouple conformity: Better than 0.05°C

Slip-ring capsule
o Electro-Tec model ETC P/N 67584
Number of rings/circuits: 20
Current ratings: 3 A at 500 VDC
Contact resistance (noise): 25 mfl at 100 mA (10 RPN)
Life: 18 million éevolutions at 8 RPN

Operating environment: -355 to 125°C

285



T A

4. Liquid circulation system . - -

a)

Rotating union

¢ Deublin series 1106

Digital flow meter

e Cole-Parmer model J-5618-04 Nicet semi-micro flow semsor
Range: 1.51 to 17.0 LPX
NMaximum pressure: 3.76 x 10° Pa at 105°C
Linearity: #1 % full scale
Repeatability: #0.25 % full scale

e Cole-Parmer model J-5622-35 Line powered flow meter
Accuracy: #1 7% full scale

Repeatability: #0.5 % full scale
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Appendix B: DESIGN OF THE ROTATING DISK ASSENBLY
The details of the design of the rotating disk assembly will be
explained. This includes the rotating disk, spindle, electric motor,
rotating fluid coupling, and the electric power supply for the motor and

the etched foil heater.

Figure B.1 1is an overall view of the rotating disk assembly as it appears
in the experimental setup. The electric motor is mounted to the spindle,
which in turn is mounted onto the vertical frame plate. . The spindle 1is
driven by a poly-groove belt which can be removed by taking a cotter key
out and driving a pin down and out of a hole on the plate the electric
notor is mounted on. This allows the electric motor to swing toward the

spindle. This procedure is also performed to change the speed range of the

spindle.

Near the pulley on the spindle in Fig. B.1 is the magnetic pickup for
the tachometer. It is mounted through a housing such that it 1s
approximately 0.254 mm (0.010 in.) from a special gear. As the teeth pass
by the active sensor, a square wave proportional to the angular speed 1s

generated, which is then read and displayed by the digital readout.

The rotating disk and collar are also shown in Fig. B.1. The collar
is mounted onto the spindle shaft with four screws which pass up through a
coramic insulator ring. This is to prevent excessive heat from reaching
the high-precision bearings. An 0-ring seal is placed between the spindle

shaft and the inner diameter of the collar to prevent water from passing
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over the top of the collar. A shim is placed between the collar and
rotating disk fo set the ini%ial gap height. Caution must be used when
installing this shim so that the chamfer or bevel on the imner diameter of
the shim is directed upward to mate with the small radius where the spindle
shaft has a step in diameter. Otherwise, the shim and rotating disk will
not seat properly. Also, it was found that the thickness of the shim does
not correspond to the initial gap height, as was originally planned.
Therefore, feeler gages must be used to directly measure this gap. Like
the collar, the rotating disk has an 0-ring to prevent water from running
directly down the spindle shaft. The large nut below the rotating disk
holds the disk against the spindle. In order to achieve repeatability in
the stationary film thickness measurements, marks were placed on the collar
and the rotating disk for alignment purposes. The two marks were first
aligned with each other, and then the marks were aligned with the

capacitance probe. With this procedure, repeatability could be achieved.

Some preliminary tests were made with two different collars which are
shown in Fig. B.2. The first design was a reducer as shown in Fig. B.2a.
The part of the reducer that was closest and parallel to the disk acted as
a flow straightener, which directed most of the liquid to flow in the
radial direction. However, part of the fluid would rebound off of the disk
underneath the flow straightener, which resulted in splashing around the
collar at moderate and high flow rates. To eliminate this problem, the
collar shown in Fig. B.2b. was tested and it was found that the splashing

was not present with the longer flow straightener.

Vhen the disk was rotated, it was found that a significant amount of
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water spray was generated by the liquid film leaving the disk and
rebounding off 'of the Lexan water tank. This created problems with water
droplets splashing onto the capaéitance probe, so a screen mesh was draped
on the sides of the tank to absorb the kinetic energy of the droplets and

prevent the water spray from rebounding off of the tank.

Below the rotating disk is a cylindrical coupling between the spindle
shaft and the rotating fluid union. These items must be removed before the

rotating disk can be taken off of the apparatus.

Figure B.3 shows a view of the footprint where the spindle mounting
holes are located. Also shown is the top view of the pulley housing on top
of the rotating disk assembly. The low speed range is shown in Fig. B.3,

vhereas the pulleys are reversed to achieve the high speed range.

Figure B.4 presents the side and top views of the aluminum rotating
disk. Six holes are drilled from the underside to just below the surface
of the disk for the placement of thermocouples along one radius. The top
of the disk is coated with an aluminum oxide ébating to prevent oxidation

on the surface of the disk.

Figure B.5 shows the design of the insulating ceramic disk. A cutout
at the top of Fig. B.5 on the ceramic disk 1is for the electric heater
leads. The six holes for thermocouples are drilled completely through the

ceramic disk.

The electrical diagram for the rotating disk unit 1is shown 1in Fig.
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B.6. The line voltage comes into the _receptacle to the left of the
frequency invertér. The plug ‘should never be disconnected from the
receptacle when either of the transformers are operating. To energize the
electric motor, first switch on the disconnect and then turn on the
frequency inverter switch. Turn the system off by reversing the procedure.
The electric motor speed is controlled with the remote control panel box
supplied with the frequency inverter. After the start button is depressed,
the speed dial can be turned to adjust the speed. The disk speed 1is

leveled off when the "at speed" lamp is lit.

To energize the electric heater on the rotating disk, turn down the
variable ac transformer and turn on the main and heater disconnects. The
variac can then be adjusted for the desired power input. Care must be

taken because the output of the receptacle is 0 - 480 V.
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Appendix C: ERROR ANALYSIS |

| ‘

In order to properly report any experimental data, an analysis of the
{ errors involved in taking the data must be given. In the present
experimental setup, the errors involved in taking tvo measurements will be

' described and quantified: the liquid film height, and the liquid flow rate.

Liquid film height

The error in measuring the liquid film height involves three pieces of
equipment: the digital micrometer, the capacitance sensor, and the
rotating disk. To evaluate the error in the film height measurement, the
individual errors of each of these pieces of equipment must be found. A
summary of the method to determine the error will now be given. A full

discussion on error analysis is given by Killer (1989).
If N is a known function of n independent variables u,, Ugy, ... 5 U_,
12 72 n

N = f(uy, ugy o0 s un)

the absolute error is given by expanding the function f in a Taylor series

f(u1 + Bug, ug ¢ Bug, «.. Uy # Aun) = f(ul, Ugy ==+ un)
2 S g, - N SO s (du )2 + +
HEI 1 Hﬁg 2 Ju_ "n 2 5;5 1
1
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where the partial derivatives are evaluated at the. measured values of u;.

If the instrumentation errors Aui’s are small quantities, the terms vhich

include (Aui)2 will be negligible. Therefore, equation (C.1) is

approximately given by

f(u1 + Buy, uy ¢ bug, ... 5 up * A“n) = f(ug, uy, -0 un)

+ g%; Auy + g%; Aug + ...+ g%; Au_ (C.2)
The absolute error of the system is then given by

B, = N - ‘%Aul . gfﬁ;Auz .t %fﬁ;Aun (C.3)

where Aui is the absolute error associated with the individual
measurements. If the Au’s are considered to be statistical bounds on the
instrument errors, such as 95 percent confidence levels, the formula for

computing the overall error is modified using the root-sum square formula

B, - Hgf-q Au1]2 + [gf@ Au2]2 b [gfu— Aun]2 (C.4)

The liquid film height is given by the following equation:
§ =h’> + (h + Ah) - R" (C.5)

vhere h’ is the digital micrometer reading, (h + Ah) is the capacitance
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probe reading of the air gap between the probe and the dry disk, and h" is
the capacitance p}obe reading of the air gap betveen the probe and the

surface of the liquid film.

Applying equation (C.4) gives

E g ﬁAh’)z . [A(h + 4)]% + (AR™)* (C.6)

The first term in equation (C.6) is the stated accuracy of the digital
micrometer, which was calibrated. at the factory with an NBS traceable
Mark- Tech Laser Gage Model 7980. The maximum deviation over the range of
movement reported on the calibration certificate is 0.001 mm. This value

is then taken as the maximum error of the instrument. Therefore,

Ah’ = 0.001 mm

The second term involves the accuracy of the capacitance sensor, which
is given by the manufacturer to be 0.1 percent of the range when
calibrated to a known standard. In the present experimental setup, the
known standard was taken to be the digital micrometer. The capacitance
probe was calibrated at the beginning of each test against the digital
micrometer in the following manner:

1. The capacitance probe 1is lowered until it lightly touches the surface
of the disk, which can be seen with a lamp directed behind the probe.

The capacitance probe is then zeroed at this point with the offset

adjustment.
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9. The probe is then raised 0.0254 mm above the disk, where the digital
micrometer is zeroed. This is done to eliminate any backlash in the

digital micrometer.

3. The capacitance sensor is then raised until it reads the maximum value

of its range, which is 2.54 mm.

The value read on the capacitance sensor readout is compared to what
is shown on the digital micrometexr readout. Any discrepancy can be
eliminated by a gain adjustment which is supplied on the capacitance sensor
readout. This sets the slope of the linear curve which relates the
strength of the electric field to the height of the air gap. By choosing
points at 0.0254 and 2.54 mm, the slope can be set over 99 percent of the
range for the greatest accuracy. The linearity of the capacitance probe
over its range was checked, and the maximum deviation was found to be 0.008

mm. This value will be added to the stated accuracy of the probe.

The second term in equation (C.6) takes on different values when the
disk is stationary and vhen the disk is rotating. Vhen stationary, the
second term is the accuracy of the capacitance Sensor given by the
manufacturer, which is #0.1 percent of the range when calibrated to a known
standard, plus the maximum deviation of the linearity of the probe over its

range. Therefore, when the disk is stationary, the second term is
A(h + 4h) = 0.01 mm

Vhen the disk is rotating, the error due to the disk not being
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perfectly flat and the wobble caused by the bearings must be taken into
account. The error when the dry disk is rotating is given by the sum of
the standard deviation of the air gap measurement between the probe and the
dry disk taken at the outer edge of the disk (where it is maximum) and the
combined error of the capacitance sensor reported by the manufacturer and
the deviation from linearity of the probe. The standard deviation of the
disk with 50 samples is ¢ = 0.02 mm. Multiple populations with an
increasing number of samples were taken to compare the means using a
tvo-tailed z-test to ensure a sample number that is within the 95 percent

confidence interval. Therefore, the maximum error in the tare data is
A(h + Ah) = 0.03 mm

The last term in equation (C.6) is again the error associated with the

capacitance sensor:

Ah" = 0.01 =m

Due to the fact that the mean film thickness 1is being reported,
further comments concerning the third term in equation (C.6) are necessary.
At all flow rates and rotational speeds, vaves were present on the free
surface of the liquid film. Figures (C.1 and C.2) present typical mean h"
values and standard deviations as 2 function of the number of samples taken
for the stationary subcritical and supercritical regions, respectively. In
each case, the same population was examined for different numbers of
samples to minimize the effect of the variation in the flow rate. For

subcritical flow, a normal z-test was performed, and 1t was found that for
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125 and 250 samples, the means were equal at the 95 percent confidence
level, so 250 sambles vere taken for each data point reported. Likewise,
for supercritical flow 80 samples were taken in order to achieve the same
confidence level. It should be noted that the standard deviations from the
mean are not errors in the instrumentation but are actual variations in the
mean film thickness due to the wavy nature of the free surface of the
liquid film. A similar test performed when the disk was rotating showed
that the number of samples needed for the 95 percent confidence level was
the same as that for the stationary supercritical region. The overall

root- sum- square error in the liquid film height measurement is as follows:

Stationary disk -

AR’ = 0.0001 mm, A(h + Ah) = 0.01 mm, Ah" = 0.01 mm
Erss = #0.01 mm

Rotating disk -
Ah’ = 0.0001 mm, A(h + Ah) = 0.03 mm, Ah" = 0.01 mm
E i = *0.03 nu

Vhile the liquid film height at the collar could not be measured with
the capacitance probe, the gap between the collar and the disk could be
measured with feeler gages. Therefore, for the data point at the collar,

the absolute error in the liquid film height was found to be

Ea =+ 0.01 mm
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Flow meter

’

It is desired to determine the accuracy of the flow rate reported in
the present experiment. The turbine flow sensor and digital flov meter

were calibrated in the following manner:

1. A line was drawn on the ingide of a large bucket, and the volume to
this line was measured with a 1000 = 5 ml graduated cylinder. The

volume was measured three times and the average of these three

readings was 17.23 + 0.08 L.

9.  The flow rate through the flow sensor was alloved to reach the steady

state at 12.5 + 0.05 LPX, which is within the range of the reported

flow rates.

3. The timer was started and the water was directed into the calibrated

bucket.

4. The amount of time to fill the bucket to the line was noted and the
actual flow rate was checked against the reading on the digital flow

meter.

5. The gain on the digital flow meter was changed until the flow rate

read on the flow meter checked to within #0.05 LPX of the measured

flow rate.

The accuracy of the actual flow rate measured with the bucket and the
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stop watch can be determined with the method outlined in the previous
section concerning the capacitance sensor. The equation for finding the
flov rate is = V/t, vhere V is the volume and t is the amount of time.

The absolute error is given by the following equation:

E, - ISSAV g%Atl (€.7)

The time and volume measured are as follows:

<+

1.37 = 1/60 min.

(2
n

17.23 + 0.08 L

-
I

The partial derivatives are

1 1

53 = Lo L = 0.730 LPY/L

9 y 17.23 .
= - = - = -9.18 LPM/min

7 2 (1.37)2

The error in the flow rate measured with the stop watch and the bucket 1is

+

B, = |(0.730)(0.08) (-9.18)(1/60)| = 0.2 LP¥

The maximum deviation of the flow rate read on the digital flow meter
from the actual flow rate was found to be = 0.05 LPX. The variation of the

flow rate due to the circulation pump for each test where the film
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thickness is measured was held to # 0.05 LPN. Thegefore, the total error

on the flow rate is the sum of these three readings:

Ea = +0.3 LPX
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Appendix D: EXPERINENTAL DATA

Experimental parameters:

r. = 50.8 mm
in

Tout = 203.2 mm
6in = 0.267 mm

Fluid temperature = ambient temperature = 22°¢

Vorking fluid = de- ionized water
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Table D.1 .

Radial Location
50.80
76.20
81.28
86.36
91.44
93.98
96.52
101.6
106.7
111.7
114.3
116.8
121.
127.

T O W

129.
132.

—

134.

[ S B 2]

137.
139.7
142.2

144.8

7 LPX
0.267
0.322
0.330

0.345

0.361
0.378

4.37
4.42
4.42
4.47
4.47

9 L?l
0.267
0.282
0.289
0.300
0.315

2.92
3.30
3.55
3.78

11 LPX
0.267
0.269
0.277
0.284
0.297
0.310
0.325
0.340
0.361

0.383

0.411
0.442
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Experimental data for the stationary disk

13 LPX
0.267
0.264
0.272
0.277
0.287
0.297
0.312
0.330
0.348

0.371
0.396
0.424

0.516

0.549

15 LPX
0.267
0.250
0.254
0.259
0.266

0.267
0.288
0.301
0.320

0.340
0.359
0.388



Table D.1 Experimental data for the stationary disk, continued

Radial Location
147.
152.
154.
157.
160.
162.
167.
170.
172.
175.
177.
182.
187.

3
4

©w Qo

190.5

193.
195.

7 LPX
4.52
4.52

4.52
4.52
4.47

4.42
4.97

9 LPX 11 LPX 13 LPX 15 LPN
3.94 .- - 0.487
4.14 2.82 - 0.523
- 3.20 - -
4.24 3.45 .- 0.550
- 3.63 .- .-
4.34 3.84 - 0.568
434 4.09 2.87 0.596
- .- 3.17 -
4.39 4.19 3.48 0. 644
- - 3.63 -
4.39 4.29 3.78 -
4.39 4.34 4.04 .-
4.39 4.37 4.16 .-
4.34 4.37 4.22 1.90
4.32 4.32 4.16 2.22
- 4.16 4.06 2.45
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Table D.2. Experimental data for the rotating disk: 55 RPN

-

Radial Location 7 LPX 9 LPM 11 LPX 13 LPX 15 LPX
50.80 0.267 0.267 0.267 0.267 0.267
76.20 0.328 0.317 0.279 0.284 0.274
81.28 0.333 0.325 0.284 0.287 0.279
86.36 0.353 0.335 0.292 0.295 0.287
91.44 0.366 0.348 0.305 0.302 0.292
96.52 0.386 0.363 0.312 0.310 0.300
101.6 0.404 0.376 0.328 0.325 0.315
106.7 0.424 0.396. 0.343 0.338 0.330
111.7 0.444 0.409 0.358 0.351 0.345
116.8 0.462 0.439 0.373 0.371 0.363
121.9 0.478 0.452 0.399 0.396 0.389
127.0 0.490 0.467 0.414 0.411 0.401
132.1 0.500 0.477 0.429 0.444 0.429
137.2 0.513 0.490 0.455 0.457 0.442
142.2 0.513 0.513 0.470 0.483 0.460
147.3 0.513 0.513 0.500 0.503 0.475
152.4 0.505 0.518 0.503 0.518 0.505
157.5 0.505 0.521 0.528 0.528 0.518
162.5 0.495 0.533 0.528 0.543 0.531
167.6 0.480 0.531 0.528 0.543 0.541
172.7 0.457 0.508 0.528 0.546 0.551
177.8 0.457 0.511 0.528 0.561 0.551
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Table D.2. Experimental data for the rotating disk: 55 RPN, continued

.

Radial Location 7 LPK 9 LPX 11 LPK 13 LPK 15 LPX
182.8 0.429 10508 0.528 0.546 0.577
187.9 0.457 0.508 0.551 0.546 0.577
190.5 0.508 0.551 0.551 0.561 0.577
193.0 0.805 0.729 0.635 0.587 0.577

195.5 132 109 0.808 .- 0.630
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Table D.3. Experimental data for the rotating disk: 100 RPM

-

Radial Location 7 LPX 9 LPX 11 LPX 13 LPX 15 LP¥
50.80 0.267 0.267 0.267 0.267 0.267
76.20 0.317 0.312 0.300 0.297 0.307
81.28 0.325 0.320 0.302 0.302 0.312
86.36 _ 0.333 0.328 0.307 0.305 0.320
91.44 0.348 0.338 0.315 0.312 0.325
96.52 0.363 0.351 0.325 0.323 0.340
101.6 0.381 0.366 . 0.338 0.333 0.351
106.7 0.394 0.378- 0.351 0.345 0.366
111.7 0.404 0.394 0.366 0.361 0.381
116.8 0.414 0.404 0.381 0.378 0.404
121.9 0.419 0.417 0.394 0.394 0.399
127.0 0.424 0.422 0.406 0.411 0.419
132.1 0.424 0.427 0.424 0.427 0.442
137.2 0.419 0.427 0.424 0.442 0.460
142.2 0.411 0.427 0.432 0.442 0.470
147.3 0.401 0.427 0.432 0.452 0.477
152.4 0.391 0.424 0.432 0.460 0.483
157.5 0.383 0.422 0.429 0.460 0.493
162.5 0.371 0.411 0.429 0.452 0.495
167.6 0.358 0.404 0.419 0.457 0.498
172.7 0.343 0.399 0.422 0.452 0.485
177.8 0.335 0.386 0.414 0.449 0.483
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Table D.3. Experimental data for the rotating disk: 100 RPM, continued

Radial Location
182.8
187.9
190.5
193.0
195.5

"7 LPA
0.328
0.315
0.312
0.310
0.330

9 LPM
0.381

- 0.37

0.371
0.363
0.373

11 iPl
0.396
0.394
0.409
0.406
0.406

314

13 LPX
0.445
0.432
0.442
0.442
0.432

15 LPX
0.483
0.462
0.460
0.465
0.457



Table D.4. Experimental data for the rotating disk: 200 RPM

Radial Location 7 LPX 9 LPX 11 LPM 13 LPX 15 LPX

50.80 0.267 0.267 0.267 0.267 0.267
76.20 0.302 0.290 0.279 0.269 0.272
81.28 0.305 0.297 0.284 0.274 0.279
86.36 0.307 0.300 0.287 0.277 0.284
91.44 0.310 0.305 0.295 0.284 0.292
96.52 0.307 0.307 0.300 0.287 0.300
101.6 0.307 0.312 0.305 0.292 0.310
106.7 0.305 0.315 0.310 0.302 0.322
111.7 0.297 0.315 0.315 0.307 0.330
116.8 0.290 0.312 0.318 0.318 0.343
121.9 0.282 0.305 0.318 0.320 0.350
127.0 0.272 0.302 0.318 0.328 0.356
132.1 0.259 0.292 0.315 0.325 0.358
137.2 0.249 0.282 0.305 0.320 0.358
142.2 0.239 0.272 0.302 0.315 0.356
147.3 0.229 0.269 0.290 0.307 0.353
152.4 0.221 0.254 0.281 0.297 0.348
157.5 0.211 0.246 0.269 0.295 0.340
162.5 0.201 0.231 0.259 0.284 0.333
167.6 0.193 0.226 0.251 0.277 0.325
172.7 0.188 0.216 0.241 0.269 0.320
177.8 0.180 0.213 0.236 0.259 0.307
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Table D.4. Experimental data for the rotating disk: 200 RPM, continued

Radial Location
182.8
187.9
190.5
193.0

7 LPX
0.178
0.173
0.170
0.180

9 LPX

0.203

0.196
0.196
0.193

11 LPM
0.223
0.223
0.218
0.213

316

13 LPX

0.244
0.241
0.236
0.234

15 LPX
0.297
0.287
0.279
0.279



Table D.5. Experimental data for the rotating disk: 300 RPM

Radial Location 7 LPX 9 LPK 11 LPX 13 LPX 15 LPX
50.80 0.267 0.267 0.267 0.267 0.267
76.20 0.305 '0.295 0.289 0.282 0.281
81.28 0.302 0.300 0.289 0.287 0.282
86.36 0.295 0.295 0.287 0.292 0.285
91.44 0;292 0.297 0.289 0.295 0.289
96.52 0.289 0.297 0.292 0.301 0.295
101.6 0.284 0.295 0.289 0.303 0.302
106.7 0.279 0.292- 0.292 0.305 0.310
111.7 0.272 0.287 0.292 0.304 0.314
116.8 0.262 0.282 0.289 0.305 0.317
121.9 0.251 0.274 0.287 0.303 0.321
127.0 0.244 0.264 0.284 0.303 0.319
132.1 0.231 0.259 0.274 0.297 0.313
137.2 0.223 0.246 0.262 0.288 0.308
142.2 0.213 0.236 0.251 0.280 0.298
147.3 0.206 0.229 0.244 0.279 0.290
152.4 0.198 0.218 0.234 0.264 0.284
157.5 0.193 0.203 - 0.226 0.250 0.272
162.5 0.185 0.201 0.221 0.250 0.265
167.6 0.183 0.195 0.208 0.239 0.257
172.7 0.175 0.185 0.203 0.230 0.247
177.8 0.173 0.178 0.195 0.227 0.245
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Table D.5. Experimental data for the rotating disk: 300 RPM, continued

Radial Location 7 LPN 9 LPX 11 LPX 13 LPX 15 LPX
182.8 0.165 0.175 0.193 0.218 0.233
187.9 0.160 v0.168 0.183 0.209 0.219
190.5 0.160 0.168 0.183 0.209 0.227
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